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Abstract— Autonomous driving decision-making is a chal-
lenging task due to the inherent complexity and uncertainty
in traffic. For example, adjacent vehicles may change their
lane or overtake at any time to pass a slow vehicle or to
help traffic flow. Anticipating the intention of surrounding
vehicles, estimating their future states and integrating them
into the decision-making process of an automated vehicle
can enhance the reliability of autonomous driving in complex
driving scenarios. This paper proposes a Prediction-based Deep
Reinforcement Learning (PDRL) decision-making model that
considers the manoeuvre intentions of surrounding vehicles in
the decision-making process for highway driving. The model
is trained using real traffic data and tested in various traffic
conditions through a simulation platform. The results show
that the proposed PDRL model improves the decision-making
performance compared to a Deep Reinforcement Learning
(DRL) model by decreasing collision numbers, resulting in safer
driving.

I. INTRODUCTION

Highly Automated Vehicles (HAVs) are a rapidly de-
veloping technology with a vital role in society. The aim
of technology is to improve driving safety for drivers,
passengers and pedestrians, reduce traffic congestion and
decrease fuel consumption. One major functionality of HAVs
is Driving Decision-Making (DDM) which is responsible for
making decisions on when to take action(s), what action(s) to
perform and how to perform an action (s). These decisions
can be one at a time, such as to reach a specific velocity
or sequential such as completing an overtake manoeuvre
(accelerate-lane change) [1]. HAVs need to cooperate with
other traffic participants to make safe and reliable decisions
in continuously varying traffic conditions.

Rule-based methods are frequently used for decision-
making, specifically for lane-change manoeuvres [2]. Au-
tomated vehicles change lanes based on designed rules such
as the gap acceptance model [3] or the minimise-overall-
braking induced by lane changes (MOBIL) model [4]. Nev-
ertheless, vehicles using rule-based methods are conservative
in making decisions in a variety of traffic conditions, which
may adversely impact traffic flow [5]. Furthermore, the rules
are inflexible and cannot handle unseen driving situations.
Methods of DDM should be adaptable and generalisable to
cope with uncertainties and unseen driving situations.
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More advanced decision-making techniques compared to
rule-based techniques have been studied for highway driving.
Decision trees [6] and random forest [7] methods are hugely
depend on data and prone to over-fit. The support vector
machine (SVM) [8] is sensitive to noise, and a minute change
in data might lead to a different result. The game theory
approach [9] and Fuzzy-logic [10] are applicable when traffic
levels are low, but the complexity of the problem increases
proportionally to the number of vehicles. Monte Carlo Tree
Search (MCTS) [11] is one promising technique for the
decision-making problem of highway driving [12], but a
limited number of search branches is considered in most
studies due to the computational cost. Combining MCTS
with a neural network, known as deep MCTS, helps to
better guide the sampling towards the most relevant sub-trees
[13] and improves the computational efficiency. Despite their
promising results, most of the aforementioned techniques
suffer from lack of generalisation or adaptability in unseen
driving conditions.

Recently, Reinforcement Learning (RL) has received sig-
nificant attention from researchers as a powerful technique to
solve complex, uncertain DDM problems due to its strong
adaptability and generalisation. At first, value-based tech-
niques such as Q-learning [14] were used by researchers for
DDM due to its simplicity [15]. However, the performance
of such methods for complex and high dimensional driving
situations such as dense traffic is limited because of the
curse of dimensionality. The combination of Q-learning with
neural networks addresses this problem and paves the path
for using Q-learning for complex DDM applications [16].
Early implementations of Deep Q-Networks (DQN) was used
for lane-keeping control of a vehicle in a race track [17], [18].
Later, DQN algorithms were used by different research works
to make decisions in highway driving scenarios [19]. For
instance, using a quantile regression DQN (QR-DQN) [20],
Min et al. introduced a sensor fusion structure controller to
decide lane-keeping, lane changing, and acceleration control
in their study [21]. Mo et al. studied [22] the challenging
scenario of oncoming traffic by implementing Double DQN
[23] as a DDM to perform the lane-change manoeuvre,
but decision-making is supported by rule-based Time to
Collision (TTC) [24] rewards which calculates collision
time based on constant speed. Shi et al. [25] proposed a
hierarchical decision-making model, where a DQN model
decides when to perform a lane change manoeuvre, and
another Q function approximator decides how to complete
the manoeuvre. Mirchevska et al. [26], and Shu et. al
[27] implemented a safety check to DQN outputs for the
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execution of action to prevent the collision. Safety check
considers output based on safety distance to prevent collision
if in case after lane change, the lead vehicle performs
sudden brake and cause ego vehicle to collide. The real-time
performance of the aforementioned DDM techniques suffers
from the lack of foreseeing the other vehicles’ intentions.
It is known that driving intentions of surrounding vehicles
significantly influence the decisions made by HAVs and have
to be included in the DDM process.

In separate works, researchers contributed to predicting the
intentions of surrounding vehicles. A study by Gindele et al.
deals with simplified traffic models and makes accurate pre-
dictions based on the Partially Observable Markov Decision
Processes (POMDP) [28] . Alizadeh et al. [29] studied the
same problem by integrating noise when measuring other
vehicles’ positions and compared the result with the rule-
based lane change model Mobil [30]. In another study [31],
authors predicted surrounding cars velocity and used this
information for path planning. Based on this prediction, they
decreased the calculation cost by 90%. Jiang et al. [32]
considered the estimation of other vehicles’ intentions for
trajectory planning in their work, but the prediction only
considered whether the target lane vehicle is cooperative
or aggressive when performing the lane change manoeuvre.
Kochenderfer et. al. anticipated driver cooperativeness for
merging scenario [33]. Recent studies [34], [35], integrated
the intention prediction module to decision-making process
to improve the performance. For instance, Gonzalez et al.
proposed a human-like decision making [12] by implement-
ing a belief tree to estimate lane change of other drivers using
MCTS, however the sampling time of tree search and the
lack of tractability was the limitation of MCTS. In another
study [36], target vehicle trajectory is predicted based on
three actions such as we have used in our model, but the
prediction horizon considers only two seconds ahead just
for the target vehicle on the defined lane, whereas our study
contains five seconds prediction horizon for surrounding six
vehicles. The studies in literature either predict the behaviour
as a general (such as aggressive or passive) or generate a
belief tree based on initial prediction/assumption. In contrast
to the literature mentioned above, our study continuously
considers lane change prediction and updates the prediction
for each observation state for a longer time zone as long as
the surrounding vehicles are within the radar range.

This paper focuses on how to integrate intention predic-
tions of other vehicles into the DDM process of a HAV
to make safer decisions through DQN methods. The paper
proposes a prediction-based DDM method for lane-change
highway driving scenarios by integrating the intention of
surrounding vehicles as a time to lane change in the decision-
making model, which helps decreasing potential collisions.
In this paper, different DQN techniques are used to formulate
the DDM problem and their performance’s are compared
with and without a prediction module.

The paper is structured as follows. In section 2, the
proposed decision-making methodology is explained. Section
3 clarifies network parameters as well as training and test

evaluations. Section 4 discusses and evaluates the results,
and section 5 concludes the study.

II. PROPOSED METHOD

A. Assumptions

We assume that an Ego vehicle (EV) and target vehicles
(TVs) are driving on a three-lane straight highway. The EV is
equipped with a 360-degree radar sensor that can detect the
position and velocity of surrounding vehicles within R =
250 m distance to the EV. Using a bird-eye view (BEV)
camera, we can observe the environment for the prediction
of up to six adjacent vehicles as shown in Figure 1. The Ego
vehicle utilizes all this information to predict surrounding
cars’ intention (whether they are going to perform a lane
change or stay on the current lane).

The manoeuvre intention predictor consists of two parts as
shown in Figure 2. The first part is a classifier that identifies
the intention of the other cars as PLK , PRLC , PLLC where
LK represents a lane-keeping manoeuvre, RLC and LLC
represent lane change manoeuvres to the right and to the left,
respectively. The second part is a regressor which estimates
Time-to-Lane Change (TTLC), t ϵ T as {5, 4, 3, 2, 1, 0}
where numbers represent time in seconds when classifier
actions occur.

By adding this information, the decision-making model
has distance, velocity and prediction information of nearby
vehicles. Having all this information, the decision-making
model controls the EV lane change decision such as left
lane change, right lane change or lane-keeping and reacts
instantly in vehicle dynamics limit by maintaining driving
safety.

Fig. 1. Ego vehicle driving on highway

B. Decision-Making Model using Reinforcement Learning

A Markov Decision Process (MDP) is the mathematical
framework for decision making that is the basis of the
RL problem formulation. [38]. An MDP is composed of
an action set A, a state set S, a reward function R and a
transition model P(s’|s, a). An RL agent learns to maximise
expected cumulative reward in an MDP by taking an action
a ϵ A, which reaches a new state s’ ϵ S and receives a
reward r. The agent updates its policy π to maximise future
cumulative rewards and the process is repeated until the agent
has sufficiently optimised the policy to achieve the highest
score in the environment.

Cumulative rewards is the summation of a sequence of
rewards received. A discount factor γ ϵ [0,1] is then applied
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Fig. 2. An overview of the prediction model [37]

at each time-step to trade off the importance of immediate
rewards over long term rewards.

The state-space includes the position and velocity of EV,
surrounding vehicles’ distance to EV, their velocities, and
intentions. The EV’s action space is defined as a left lane
change, right lane change or lane-keeping A={LLC, RLC,
LK}. The goal of RL is to find optimal policy π that
maximizes total future rewards:

R(π, r) = Eπ

[∑
t=0

γtr (st, at)

]
(1)

When solving sequential decision problems, estimations are
learned for the optimal value of each action, which is defined
as the expected value of the rewards in the future when taking
that action and following the optimal policy accordingly. The
policy is used to predict the value for each action in A for
the current state. This action-value function is formulated as:

Qπ(s, a) = E[R1 + γR2 + ...|S0 = s,A0 = a, π] (2)

Actions can then be chosen greedily with respect to this
action-value function, or alternatively, exploratory actions
can be taken given the current observation s ϵ S.

A neural network is then trained by minimising the loss
function below at each iteration i, optimising the network
weights θ,

Li (θi) = Es,a∼ρ(·)

[
(yi −Q (s, a; θi))

2
]

yi = Es′∼ε

[
r + γmax

a′
Q (s′, a′; θi−1) | s, a

] (3)

yi is the target and ρ(s, a) is the probability distribution of
states and actions. The differential of the loss function with
respect to the weights gives us the following gradient.

∇θiLi (θi) = Es,a∼p(·);s′∼E

[(
r + γmax

a′
Q (s′, a′; θi−1)

)
−Q (s, a; θi)∇θiQ (s, a; θi)

]
(4)

This gradient is followed through Adam (Adaptive Mo-
ment Estimation) gradient decent on each iteration.

C. Reward Functions

• Collision Penalty: Collision is an undesirable situation
and to prevent this event, the highest penalty is given
for collision status.

• End of Track: If the agent completes the track and
reaches the goal, it receives a positive reward value.

• Lane Change Penalty: To prevent an unnecessary lane
change, the agent receives a small penalty if there is a
lane change, since the value is very low comparing to
other rewards and penalties, it does not effect the goal
of the agent but prevents it from taking unnecessary
actions.

Combining all reward functions defines the total reward
function as follows:

Reward Function = REnd of Track −RLane Change

−RCollision (5)

D. Intention Prediction Model

The proposed decision-making model (Figure 3) is com-
bined with predicted actions of surrounding cars. The in-
formation for the lane change manoeuvre fed into the fully
connected layer for each state, in additional to velocity and
distance information. The intention of other cars to lane
change is implemented as Time-To-Lane-Change (TTLC)
which is introduced in the study of Mozaffari et al. [37].
Figure 2 shows an overview of the prediction model and a
summary of key processing steps of the prediction model is
provided below:

• BEV input representation: First, the states of the
target vehicle and its surrounding vehicles at each
time-step are used to generate a simplified top-down
view representation of the driving environment. This
representation includes the vehicle bounding boxes, the
road marking and the drivable area, each encoded with a
specified value. A temporal channel-wise stack of BEV
representation for the past few time-steps creates the
input data at the current time-step.

• Attention-based Feature Extractor: A six-layer Con-
volutional Neural Network (CNN) [39] is used to extract
relevant features for the prediction task from the stacked
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Fig. 3. Proposed TTLC method network structure

BEV representations. To enhance the feature extraction
performance, a special attention mechanism is designed
to selectively focus on one of the quarter areas around
the target vehicle, namely, front-right, front-left, back-
right and back-left. The introduction of the attention
mechanism helps the prediction model to identify the
informative area of the surrounding environment in each
prediction query.

• Multi-task Heads: A multi-task learning approach has
been used in dealing with lane change prediction prob-
lem. The lane change prediction problem is defined as
estimating the likelihood of lane change manoeuvres
(i.e., right lane change, left lane change and lane-
keeping) within a prediction horizon and regressing the
Time-To-Lane-Change. A separate multilayer percep-
tron head is considered for the likelihood estimation and
regression parts, although both heads use the extracted
features by the attention-based CNN model. The overall
model is trained using a weighted sum of a mean
squared loss for the regression part and cross-entropy
loss for the classifier (i.e., likelihood estimation).

E. Vehicle Longitudinal and Lateral Controllers

The EV lateral controls are defined as discrete actions and
the decision making model perform actions to change or keep
lane. The Intelligent Driver Model (IDM) [40] controls the
longitudinal movement.

1) Actions: The agent has three actions: left lane change,
right lane change, and stay at the current lane. These actions
are discrete, and the decision-making model performs the
best action based on observed inputs. The IDM controls the
EV’s acceleration and velocity.

2) IDM: The IDM controls vehicle acceleration and de-
celeration based on the distance and velocity between the EV
and the vehicle in front of the EV, and adjust vehicle velocity
accordingly. The IDM automatically prevents collision by
observing distance and decreasing velocity if the EV is too
close to the front vehicle. In our model, acceleration is
calculated based on the below equations and parameters [41]
shown in the Table I for the IDM model.

a = amax

[
1−

(
v

vdesired

)4

−
(
s∗ (v, vlead )

s

)2
]

(6)

s∗ (v, vlead) = max

(
s0, vρ+

1

2
amaxρ

2+

+
(v + ρamax)

2

2bsafe
− (vlead )

2

2bmax

)
(7)

TABLE I
IDM PARAMETERS

Parameter V alue

Minimum Distance (s0) 5 m
Desired Velocity (Vdesired) 130 km/h
Maximum Acceleration (amax) 3 m/s
Maximum Deceleration (bmax) 5 m/s
Safe Deceleration (bsafe) 4 m/s
Response Time (ρ) 0.25 s

F. Reinforcement learning Methods for DDM

The Deep Q-Networks (DQN) differs from Q-Learning
by using deep networks composed of layers and neurons
instead of a Q-table. State, action, reward, and next state
are the main elements of DQN. Based on observation states,
the agent performs random actions using an epsilon greedy
policy to explore the environment. Based on these states and
actions, the agent reach a new state and obtains a reward.
The action-value (Q-value) is calculated based on rewards
obtained using the Bellman equation. The targets are the
Q-values of each of the actions and the input would be
the state that the agent is in and the intention prediction
of surrounding cars. This is an iterative process where the
agent stores learning information (state, action, reward, next
state, terminal state flag) in the replay buffer. The agent
then learns to optimise the Q-function to maximise future
expected cumulative reward using a random batch of stored
transitions from the replay buffer. Repeating this process
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Fig. 4. Simulation of HighD traffic

helps the agent to maximize its cumulative reward, allowing
the agent to perform the best action for a new state. The
algorithm for Deep Q-learning with experience replay is
shown below. Due to the variety of methods, only the base
algorithm [42] is given here.

Algorithm 1: DQN with Experience Replay
Initialize replay memory D
Initialize action-value function Q with random

weights
for episode = 1, M do

Initialise sequence s1 = {x1} and ϕ1 = ϕ(s1)
for t = 1, T do

Select random action at with probability ϵ
select at = maxaQ ∗ (ϕ(st), a; θ) based on
1− ϵ

Execute action at and obtain reward rt and
state xt+1 Set st+1 = st, at, xt+1 and
preprocess ϕt+1 = ϕ(st+1)

Store transition (ϕt, at, rt, ϕt+1) in D
Sample random minibatch of transitions
(ϕj , aj , rj , ϕj+1) from D

Setyj =


rj : for terminal ϕj+1

rj + γmax′
aQ(ϕj+1, a

′; θ)

: for non-terminal ϕj+1

Perform gradient decent step on
(yi −Q(ϕj , aj ; θ))

2 according to equation 4
end for

end for

Q(st, at) ← Q(st, at)+

+ α[rt+1 + γmax
a

Q(st+1, a)−Q(st, at)] (8)

The DQN method, by its nature, might have tendency to
overestimate Q-values. To overcome this drawback, many
improvements have been proposed in the literature. To extend
our study and compare the methods proposed in literature,
five different DQN variants have been implemented. The
variants included in our study are:

• DQN [42]: Have tendency to overestimate Q-values.
• Double DQN [23]: Uses the target network to calculate

the Q-value to solve the overestimation problem.
• Averaged DQN [43]:Provides more stable training and

reduces approximation errors by taking an average of
the last five values.

• Duelling DQN [44]: Separates networks as two layers
such as advantage and value.

• Noisy Network [45]: Adds noise to weights to improve
exploration efficiency.

III. PERFORMANCE EVALUATION

There are many open-source platforms to simulate traffic
environments, such as Carla [46], AirSim [47] and Sumo [48]
but generating simulated traffic based on real traffic data was
not straightforward to implement to these platforms. Since
we aimed to simulate an agent on a real-world application by
predicting real drivers intentions, these platforms were also
unsuitable. Therefore as shown in Figure 4, we have gener-
ated a Pygame [49] based traffic simulation environment.

A. Dataset

Highway driving has been studied in various works based
on two main datasets NGSim [50] and HighD [51]. Both
datasets contain all necessary information such as lateral and
longitudinal position, velocity and acceleration information
for each vehicle in traffic. The HighD dataset is collected
using a drone capturing a 420 m long part of the German
highway. A wide-angle camera observes the position of
vehicles and provides accurate data in occluded traffic. In
this study, training and testing were performed based on the
HighD dataset. Fifteen different track’s data were used for
training, and a further 15 were used for testing from the 60
track dataset.

Since this traffic is not rule-based or randomly-generated,
it reflects real tests results. On the other hand, using datasets
has some drawbacks, for example other vehicles can not
sense the EV and for that reason, there are inevitable
collisions caused by other vehicles.

B. Network & Hyperparameters

Our initial evaluations were performed to determine hy-
perparameters for optimal and fast convergence. Parameters
were chosen based on initial runs (see Table II). In addition
to these hyperparameters, analysis was performed to use
the dropout feature [52]. Decision making model with the
dropout could not be converged to the stable loss value.
This feature was also tested as an experiment but it did
not contribute to the decision-making model and therefore
dropout was excluded.

The network was composed of 3 fully connected layers;
the first two layers include 128 nodes, and the final layer
is formed of 3 nodes to represent agent action space. The
Pytorch library was used for neural networks computations.
Networks were optimized using the ADAM algorithm, which
is computationally efficient and converges rapidly [53]. The
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Fig. 5. Loss comparison of methods

Fig. 6. Score comparison of methods

discount rate was set to γ = 0.95, and the learning rate to
α = 10e − 5. The size of the experience replay memory is
10 000. The batch size for stochastic gradient descent is 32.
Epsilon-greedy exploration policy was used for all methods
except Noisy networks, starting from ϵ = 1 and decreasing
to ϵ = 0.01 as a minimum value.

C. Experiments

Initially, 20 000 episodes were chosen since methods were
converging between 12 000 and 14 000 episodes, but after
hyperparameter optimizations, methods converged around 7
000. Training time differs between methods. Base DQN
training finished in 10 h, Noisy DQN and Double DQN were
completed in 11 h, Duelling DQN in 16 h and Average DQN
in 19 h. TTLC methods added an additional two hours for
each method.

The loss graph of methods in Figure 5 shows that the most
smooth curve belongs to Average DQN; although it has a
higher loss value than other methods, it is the most stable.

TABLE II
MODEL HYPERPARAMETERS

Hyperparameter V alue

Learning Rate (α) 10e-5
Discount Factor (γ) 0.95
Epsilon min (ϵ) 0.01
Memory 10e4
Batch Size 32

On the other hand, Noisy DQN has the lowest loss value
and has more fluctuations than other methods. In general,
DQN, Double DQN and Duelling DQN have similar values
in between. DQN is slightly lower than others, and Double
DQN is noticeably higher than Duel DQN. Comparison of
methods in terms of the score shows that all methods have
reached the maximum score and have a stable policy as seen
in Figure 6. It is observed that Noisy DQN has reached
the maximum score sooner than other DQN variants, and it
shows that Noisy DQN is more sample efficient than others.
This is because it explores the environment differently than
the epsilon-greedy approach.

The tests were performed 45 times, and the average
collision number is measured for comparison. Both the base
method and proposed method have been tested on the same
tracks. As it can be seen from Table III, the proposed TTLC
approach improved the performance of decision-making for
highway driving comparing to base methods. Comparing all,
among the base methods, Noisy DQN showed the best per-
formance as having the lowest collision number on average
as 11.55, followed by Averaged DQN as 12.33 and DQN as
12.73. On the other hand, the proposed method contributed
most to the Averaged DQN as 29.2% improvement, and
collision number is decreased to 9.53 and followed by DQN
with 10.84 collisions on average and then Noisy DQN as
10.93 collisions. The proposed TTLC method has contributed
a significant improvement to the results. The most noticeable
contribution was to the Averaged DQN, followed by Duelling
DQN as 21.22% and DQN as 17.43%. On average, for the
five methods proposed, there was 15.51% less collisions in
general with ground truth data. It can be inferred from Table
III that the predicted TTLC shows less contribution for each
method comparing to the ground truth. The predicted TTLC
decreased the collision rate by 8.19% when averaged over
all methods.

IV. DISCUSSION

The results of this study show that the best performance is
obtained by Noisy DQN for base approaches and Averaged
DQN for the proposed method. The novel improvements
and extensions were implemented to DQN, such as Double
and Duelling DQN, but these two extensions could not
perform better than DQN. A general assumption about these
extensions is; Double DQN and Duelling DQN methods
have better performance than DQN, as shown in [44] and
[54]. However, this is not consistent in all environments, as
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TABLE III
COLLISION NUMBER COMPARISON FOR ALL 5 DQN EXTENSION FOR BASE AND PROPOSED TTLC METHOD BY USING GROUND TRUTH AND

PREDICTION MODEL

Base Ground Truth TTLC Predicted TTLC

CollisionNumber CollisionNumber Improvement % CollisionNumber Improvement %

DQN 12.73 10.84 17.43 12.44 2.33
Double DQN 13.11 12.6 4.04 12.02 9.06

Averaged DQN 12.33 9.53 29.3 9.93 19.46
Duelling DQN 13.82 11.4 21.22 12.57 9.94

Noisy DQN 11.55 10.93 5.6 11.53 0.17

seen in [44]. Reinforcement learning approaches distinctly
depend on the environment and action space of the agent
since everything is built on the interaction of these two.
According to [44], Duel DQN showed -100% worse per-
formance than DQN on the Freeway environment in which
an agent attempts to avoid other traffic participants and pass
through the highway. In this environment, similar to our case,
the agent has only three actions and avoids collisions. As
a result, Duelling DQN is not always better than DQN. In
limited action space, it shows reduced performance compared
to DQN. The advantage of the duelling network lies in its
ability to approximate values efficiently. When the number of
actions is high, this advantage over single-stream Q networks
increases [55]. It shows superior performance if there is a
possibility of the agent having multiple actions per time step,
such as the Atlantis environment [56].

The proposed TTLC method improved the result signif-
icantly and provided a safer autonomous drive. The con-
tribution of TTLC varied in different DQN extensions and
Averaged TTLC showed the best improvement among the
TTLC methods. The prediction horizon overlaps with the
Average DQN since the Average DQN takes an average
of the last five values and the prediction model considers
ongoing five seconds for each time step.

The different methods cause variations in the neural
network weight updates and give rise to the fluctuations
between methods. In addition, a limitation of our model
is that the radar can only detect up to 6 cars at a time
which causes uncertainty and impedes the decision-making
model for the cases where more than six surrounding vehicles
are present as they are not visible to the EV. These two
factors could be the reason for the variance between the
DQN extensions. However, despite differences between the
extensions, on average, the proposed TTLC contributed to
having 15.51% less collision than the base methods. This
improvement clearly shows our proposed TTLC methods’
contribution compared to the base methods and therefore
concludes that TTLC promises a better approach for real-
world applications such as highway driving.

V. CONCLUSION

In this work, we have tested various DQN methods for
autonomous highway driving. A decision-making model inte-
grated with a prediction model has been proposed to improve

highway driving safety. The intention of surrounding cars
is integrated into the decision-making model and compared
with base methods. The proposed method shows that pre-
dicting surrounding cars’ intention to lane change decreases
collision possibility and provides safer driving than base
approaches. This study has revealed that Averaged DQN
TTLC showed the best performance within the methods in
this environment. Another outcome of the study is that the
action space influences the contribution of DQN variants to
the performance.
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