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Abstract. Traditional machine learning methods heavily rely on large
amounts of labelled data for effective generalisation, posing a challenge
in few-shot learning scenarios. In many real-world applications, acquir-
ing large amounts of training data can be difficult or impossible. This
paper presents an efficient and explainable method for few-shot learning
from images using inductive logic programming (ILP). ILP utilises logi-
cal representations and reasoning to capture complex relationships and
generalise from sparse data. We demonstrate the effectiveness of our pro-
posed ILP-based approach through an experimental evaluation focused
on detecting neurodegenerative diseases from fundus images. By extend-
ing our previous work on neurodegenerative disease detection, including
Alzheimers disease, Parkinsons disease, and vascular dementia disease,
we achieve improved explainability in identifying these diseases using
fundus images collected from the UK Biobank dataset. The logical rep-
resentation and reasoning inherent in ILP enhances the interpretability of
the detection process. The results highlight the efficacy of ILP in few-shot
learning scenarios, showcasing its remarkable generalisation performance
compared to a range of other machine learning algorithms. This research
contributes to the field of few-shot learning using ILP and paves the way
for addressing challenging real-world problems.

1 Introduction

Few-shot learning [2] is a challenging task in machine learning that aims to enable
models to generalise and make accurate predictions with only a limited amount
of labelled training data available. Traditional machine learning models typically
rely on large amounts of labelled data for training to achieve high accuracy. How-
ever, when faced with scenarios where only a few training examples are avail-
able, these models often struggle to generalise effectively. In contrast, humans
exhibit a remarkable capability for one-shot or few-shot learning, where they can
quickly grasp new concepts and make accurate predictions with minimal expo-
sure to data. The key reason for the disparity between machine learning models
and human performance in few-shot learning lies in the inherent differences in
their learning mechanisms. Machine learning models, especially those based on
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deep neural networks, rely on a data-driven approach where patterns and rep-
resentations are learned through optimisation processes. These models require
substantial amounts of labelled data to capture the complexity of the underlying
problem and generalise effectively. In contrast, humans possess innate cognitive
abilities that enable them to reason, abstract, and leverage prior knowledge when
encountering novel tasks or scarce data.

Human learners can draw upon their vast prior knowledge and existing men-
tal frameworks to make inferences and generalise from limited examples. They
can recognise commonalities, abstract underlying concepts, and adapt previous
knowledge to new situations. These cognitive abilities, coupled with an innate
capacity for transfer learning, allow humans to excel at few-shot learning tasks.
Additionally, humans possess a rich set of prior experiences, enabling them to
leverage contextual cues, background knowledge, and intuition, often lacking in
machine learning models.

Inductive Logic Programming (ILP) [16] offers a unique perspective and app-
roach to address the limitations of traditional machine learning in few-shot learn-
ing scenarios. By leveraging logical representations and reasoning, ILP can cap-
ture and exploit domain-specific knowledge and prior assumptions. This ability
allows ILP models to learn from sparse data by generalising from a small number
of examples [5,29]. ILP is a subfield of machine learning that combines the prin-
ciples of logic programming and inductive reasoning to learn logical rules from
examples. Unlike traditional machine learning approaches that focus on statis-
tical patterns in data, ILP incorporates logical representations and reasoning to
capture complex relationships and generalise knowledge.

The logical nature of ILP enables it to represent complex relationships and
dependencies explicitly. Using logical rules and constraints, ILP models can rea-
son and make inferences beyond the observed examples, providing a strong foun-
dation for few-shot learning. ILP also benefits from incorporating background
knowledge, including prior domain expertise, into the learning process. This prior
knowledge helps guide the learning process and facilitates better generalisation,
even with limited training data. Furthermore, ILP’s capability to handle struc-
tured data, such as relational databases or ontologies, is advantageous in few-shot
learning tasks that involve complex relationships and hierarchical structures. By
representing data logically, ILP can effectively exploit the inherent structure and
dependencies in the data, enabling more effective learning from a few examples.

In a previous paper [26] we introduced an ILP approach called One-Shot
Hypothesis Derivation (OSHD) and we used this for one-shot learning from reti-
nal images to detect neurodegenerative diseases. Building upon the previous
work, we propose a novel methodology that utilises a histogram-based binning
method for improving interpretability and accuracy in detecting neurodegener-
ative diseases from retinal images. We also extend the previous study by using
state-of-the-art ILP systems PyGol and Metagol as well as comparing with a
range of other non-ILP machine learning methods. In the experiments, we focus
on the challenging task of learning diagnostic rules for neurodegenerative dis-
eases, including Alzheimer’s, Parkinson’s, and vascular dementia, from small
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number of training examples (fundus images). With limited labelled data avail-
able for each disease, we investigated whether ILP could successfully learn the
discriminative features and accurately classify the diseases based on the fun-
dus images. Through these experiments, we aim to showcase the effectiveness
of ILP in addressing few-shot learning challenges. By leveraging its logical rep-
resentations, reasoning mechanisms, and the incorporation of prior knowledge,
ILP holds promise in enhancing the capabilities of machine learning models for
few-shot learning tasks.

2 Few-Shot Learning

Few-shot Learning (FSL) is a subfield of machine learning that aims to address
the challenge of learning new concepts or tasks with limited labelled data. One
of the most widely accepted definitions of FSL is the one provided by Wang et al.
in 2020 [30], which defines it in terms of the experience, task, and performance
of machine learning [1]. If the program’s performance on some classes of tasks
T as assessed by some performance measure P improves with the addition of
experience E, then we say that the program has learned from its experience. It’s
important to stress that E is negligibly low in FSL.

To fully understand FSL, it is important to explain the idea of the N-way-K-
shot problem. The N-way-K-shot problem is a way to describe different problems
in FSL. In this problem setting, the support set is made up of a small set of data
that is used for training and then used as a reference for the testing step. Most of
the time, the number of categories (N) and the number of samples per category
(K) in the reference set are used to describe the N-way-K-shot problem. So, the
whole job comprises only N ×K samples. For example, N-way-1-shot is a type of
one-shot learning in which the reference set has N categories, but each category
only has one sample. Different taxonomies of FSL models has been listed below;

1. Active Learning [8,19]
2. Transfer Learning [31,32]
3. Meta-Learning [21,32]
4. ILP Methods [5,26,27,29]

While AI approaches have made significant progress, they still struggle to
generalise quickly from limited samples. Successful AI applications often rely
on learning from large datasets. In contrast, individuals can quickly learn new
activities by using their past experiences and expertise. For computers to match
human skills, they must solve the FSL problem. Similar to human learning, com-
puter programs can learn from supervised instances and pre-trained notions like
parts and relationships. Another significant scenario where FSL plays a vital role
is when acquiring examples with supervised information becomes challenging or
even impossible due to concerns regarding privacy, safety, or ethical considera-
tions.

Furthermore, FSL offers the advantage of reducing the data-gathering effort
necessary for data-intensive applications. By leveraging only a few labelled exam-
ples, FSL techniques can effectively generalise and make accurate predictions,
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even with limited data. This ability to learn from a small number of examples
helps alleviate the burden of collecting and annotating massive amounts of data,
making FSL an efficient and practical approach for data-intensive tasks.

3 Feature Extraction for Neurodegenerative Disease
Detection from Retinal Images

The human retina, an extension of the central nervous system, provides valu-
able insights into various neurological conditions [13]. Retinal images capture
intricate details, such as vessel abnormalities, optic nerve changes, and retinal
layer thickness alterations as potential biomarkers for neurological disorders. By
analysing retinal images, medical professionals can gain valuable insights into
conditions like diabetic retinopathy, glaucoma, multiple sclerosis, and even neu-
rodegenerative diseases like Alzheimer’s and Parkinson’s [3,15,24].

In the field of medical diagnostics, accurate and timely identification of neu-
rological conditions is crucial for effective treatment and management. Retinal
imaging has emerged as a valuable tool in this endeavour, offering a non-invasive
and accessible means of examining the intricate structures within the eye. To
further enhance diagnostic capabilities, the application of few-shot learning tech-
niques to retinal images has gained traction, enabling efficient and accurate
identification of neurological disorders even with limited labelled data. Retinal
imaging and few-shot learning present a powerful approach to improving neu-
rological diagnosis. Using few-shot learning algorithms can effectively recognise
distinct patterns associated with different neurological conditions, even with lim-
ited labelled data.

3.1 Feature Extraction from Retinal Images

Retinal images have become a valuable source of information for various medical
applications, including disease diagnosis, monitoring, and treatment. Extracting
informative features from retinal images is a crucial step in leveraging the poten-
tial of these images for accurate and efficient analysis. In this study, we delve
into the realm of feature extraction from retinal images, exploring the advantages
and applications of both handcrafted and learned features.

Learned Features. The use of deep learning and convolutional neural networks
(CNNs) has led to a move towards learning features directly from data. CNN
architectures use hierarchical feature extraction to learn representations, often
known as deep features or embeddings. The abstract characteristics depict subtle
patterns and variances in retinal pictures. CNN models trained on big datasets
can automatically learn discriminative features suited for certain tasks. Learned
features excel in retinal image processing tasks such as illness categorization,
lesion identification, and picture segmentation. Adaptable networks can extract
task-specific characteristics, revealing subtle patterns that humans may miss.
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Fig. 1. Demonstration of processing steps for vessel segmentation and artery vs. vein
classification

We mainly use learned feature techniques for optic-disc localisation and
artery/vein classification using Haar-discrete wavelet transform [12] and a pre-
trained CNN model [7]. Optic disc localisation plays a crucial role in automated
retinal image analysis, as it serves as a vital landmark for various diagnostic
tasks. The Haar wavelet is a simple, orthogonal wavelet transform that cap-
tures variations in an image at different scales. It decomposes the image into
low-frequency (approximation) and high-frequency (detail) components. On the
other hand, discrete wavelet transform (DWT) extends the Haar wavelet con-
cept to more complex wavelet functions, enabling more sophisticated analysis of
image features.

Artery/vein classification in retinal images plays a vital role in understand-
ing the vascular structure and dynamics of the human eye. Figure 1 shows the
processing steps for vessel segmentation and artery/vein classification. Accurate
identification and differentiation of arteries and veins provide valuable insights
into various ocular and systemic diseases. In recent years, deep learning tech-
niques, particularly CNNs, have emerged as a powerful approach for automated
artery/vein classification. CNN models have revolutionised artery/vein classifi-
cation in retinal image analysis, providing a robust and efficient approach for
the automated identification of vascular structures.

Handcrafted Features. Handcrafted features are designed to capture individ-
ual retinal traits or patterns. The features are manually designed using domain
expertise and expert insights. Early retinal image analysis has commonly utilised
handcrafted characteristics, which have proven beneficial in several applications.
Handcrafted traits include vessel width, curvature and tortuosity. The bene-
fits of handcrafted features are their interpretability and explicit representation
of domain-specific knowledge. Capturing complicated and subtle retinal image
alterations is limited by these methods. The study used handcrafted retinal vas-
cular characteristics, as shown in Table 1, and distinct retinal zones were analysed
in Fig. 2.

The following summary describes the calculations and measurements
involved:

– Vascular Calibres: The calibres of the six most extensive arterioles and six
largest venules were calculated. These measurements represent the width of
the vessels.



114 D. Varghese et al.

Table 1. Retinal Vascular Features (RVFs) with
the retinal zone of interest

Features Description Retinal
Zone

CRAE Central Retinal
Arteriolar Equivalent

B

CRVE Central Retinal
Venular Equivalent

B

AVR Arteriole-Venular ratio B

FDa Fractal Dimension
arteriole

C

FDv Fractal Dimension
venular

C

BSTDa Zone B Standard
Deviation arteriole

B

BSTDv Zone B Standard
Deviation venular

B

TORTa Tortuosity arteriole C

TORTv Tortuosity venular C

Fig. 2. Retinal zones considered in
this study [6].

– Standard Deviation of Width in Zone B (BSTD): The standard devi-
ation of the vessel width was calculated for both the arteriolar and venular
networks within zone B. This measurement quantifies the variation in vessel
width within the specified zone.

– Vascular Equivalent Calibre: Summary measures of vascular equivalent
calibre were computed using an improved version of the Knudston-Parr-
Hubbard formula [10,11]. This formula provides estimates of the equivalent
single-vessel parent calibre (width) for the six arterioles (CRAE) and six
venules (CRVE).

– Arteriole-to-Venule Ratio (AVR): The arteriole-to-venule ratio (AVR)
was calculated by dividing the CRAE (arteriolar equivalent calibre) by the
CRVE (venular equivalent calibre). This ratio provides insight into the rela-
tive size differences between arterioles and venules.

– Fractal Dimension (FD): The fractal dimension of the retinal vascular
network was determined using the box-counting method [14]. The fractal
dimension describes the self-similarity or branching pattern of the vascular
network across different scales. Higher values indicate a more complex branch-
ing pattern.

– Retinal Vascular Tortuosity: Vascular tortuosity refers to the curvature
and bending of blood vessels. In this study, the retinal vascular tortuosity
was quantified by calculating the integral of the curvature squared along the
vessel path, normalized by the total path length [9]. The tortuosity values
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were averaged across the measured vessels. Smaller tortuosity values indicate
straighter vessels.

By extracting and analysing these retinal vascular features, valuable infor-
mation can be obtained regarding vessel calibres, variations, equivalent calibres,
arteriole-to-venule ratio, fractal dimension, and tortuosity. These features pro-
vide insights into the structural characteristics of the retinal vascular network
and can be utilised in various medical and research applications related to retinal
vascular analysis and disease diagnosis.

4 Histogram-Based Binning Method

Inductive Logic Programming (ILP) is a powerful framework that combines logic
programming and machine learning techniques to learn hypotheses from exam-
ples. ILP traditionally operates on discrete and symbolic data, relying on logical
representations and rules. It excels at capturing patterns and relationships in
categorical or discrete domains, making it well-suited for symbolic reasoning
tasks. However, the inherent nature of ILP poses obstacles when it comes to
handling continuous data. There are certain challenges when we try to include
numerical data in the context of ILP:

– Representation: ILP traditionally operates on discrete and symbolic data,
which requires a conversion process to represent numerical data appropri-
ately. Representing continuous values as discrete symbols may lead to loss of
information and introduce discretisation errors.

– Expressiveness: Logic programming languages typically lack built-in sup-
port for numerical operations and comparisons. This limitation hampers the
direct handling of numerical data and restricts the expressive power of ILP
models.

– Scalability: Numerical data often introduces increased computational com-
plexity due to continuous value ranges and arithmetic computations. This
can significantly impact the scalability of ILP algorithms and hinder their
efficiency.

– Sensitivity to Scaling: ILP algorithms can be sensitive to the scaling of
numerical features. Differences in the magnitude or range of numerical val-
ues can significantly impact ILP’s ability to extract meaningful patterns or
relationships. Inconsistent scaling across features may lead to biased or mis-
leading results.

We introduce a histogram-based binning method for numerical or continuous
data to address the above-mentioned issues.

Histograms are graphical representations that illustrate the distribution of
continuous data. They are highly valuable for exploratory analysis as they unveil
insights about datasets that cannot be captured solely through summary statis-
tics. Histograms visually depict the data’s shape, spread, and central tendencies.
By organising the data into bins or intervals along the x-axis and representing the
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frequency or count of observations in each bin on the y-axis, histograms enable
us to discern patterns, identify outliers, and understand the overall distribution
of the data.

The advantages of histograms lie in their ability to showcase the underly-
ing characteristics of sample data. Unlike summary statistics such as mean or
standard deviation, histograms reveal the specific values and frequencies within
each interval, allowing us to grasp the range and concentration of data points
at different levels. This level of detail aids in understanding the skewness, kur-
tosis, multimodality, or presence of gaps in the data distribution, which may
not be apparent from mere summary statistics. Histograms serve as a powerful
exploratory tool, providing a comprehensive overview of the data and highlight-
ing features such as clusters, peaks, or outliers that might influence subsequent
analysis.

Our proposed binning method for ILP takes advantage of histograms’ inher-
ent flexibility and interpretability, allowing for accurate representation of data
distributions while preserving relevant statistical properties. The key principle of
our binning method is to dynamically determine optimal bin widths based on the
characteristics of the dataset. By employing advanced statistical techniques, such
as kernel density estimation or adaptive binning algorithms, we ensure that the
resulting histograms capture the underlying structure of the data with greater
precision. This approach mitigates issues related to subjectivity and arbitrary
bin widths choices while maintaining the original data’s integrity.

Now we define the notions used in the histogram-based binning method.

Definition 1. Number of Bins (k). The number of Bins, denoted as k rep-
resents the desired number of equally spaced bins to divide the data range into.

The number of bins determines the level of granularity in the histogram repre-
sentation.

Definition 2. Width of Bin (w). The width of each bin, denoted as w, repre-
sents the size of the interval for which the occurrences are counted. It determines
the level of granularity in the histogram representation.

Let R be the data range then bin width is calculated by

w =
max(R) − min(R)

k
(1)

Definition 3. Bin Edges (Bk). The bin edges, denoted as Bk =
[b0, b1, · · · , bk], represent the boundaries of the bins used in the histogram. The
bin edges can be calculated as Bk = {min(R) + i × w : i ∈ {0, 1, 2, . . . , k}}.

5 Empirical Evaluation

In this section we evaluate the effectiveness of the ILP systems, and the binning
method described in the previous section, in generating interpretable and accu-
rate rules for detecting neurodegenerative diseases such as Alzheimer’s, Parkin-
son’s, and vascular dementia from retinal images. We compare different ILP
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approaches with a range of statistical machine learning and neural network
models. We also demonstrate that by leveraging the binning method, the ILP
methods can capture meaningful patterns and relationships within the retinal
images, enabling the development of more accurate and explainable diagnostic
rules. The data, codes and configuration files used in the experiments in this
paper are available from https://github.com/hmlr-lab/FSL Fundus Images.

5.1 Materials

The data used for this study is extracted from the UK Biobank resources [23].
The UK Biobank is a large-scale project that recruited 500,000 individuals
between the ages of 40 and 69 to undergo various tests and have their health
monitored over their lifetimes. It is worth noting that only a subset of these
participants, specifically 84,767 individuals, had their retinas imaged as part of
the study. Retinal imaging was performed using the TOPCON 3D OCT 1000
Mk2 device, which combines optical coherence tomography (OCT) with fundus
photography. The imaging procedure focused on capturing images of the mac-
ula, the central region of the retina. The resulting images have a 45-degree field
of view and dimensions of 2,048 by 1,536 pixels. The information regarding the
participants in this study was collected and organised in a large CSV (Comma
Separated Values) file. Each row in the CSV file represents a participant, while
each column represents a specific data point. The UK Biobank online system
provides detailed explanations for the codes used in the column names and the
associated data, ensuring transparency and clarity in the dataset. In terms of
diagnoses, the dataset follows the International Classification of Diseases, Tenth
Revision (ICD-10) coding system.

Through a comprehensive analysis of the participant data file, we identified
a specific subset of individuals who satisfied two conditions: (1) they had fun-
dus images captured, and (2) they were diagnosed with one of three conditions:
Alzheimer’s disease, Parkinson’s disease, or vascular dementia. Within this sub-
set, we found 18 cases of Alzheimer’s, 133 cases of Parkinson’s, and 54 cases of
vascular dementia. In addition to the fundus images from these individuals with
neurodegenerative conditions, we included images from 528 participants who
were confirmed to be healthy concerning these three conditions. It is important
to note that only fundus images of the left eye were used in this study, ensur-
ing consistency in the dataset and simplifying the analysis process. We extracted
artery/vein information using learned features and then derived handcrafted fea-
tures from this information. Later, the structured data in the form of CSV was
converted into 100 different bins and encoded into logical rules.

5.2 Methods

This section outlines the methodology employed to conduct our study on few-
shot learning. We utilised a dataset consisting of images from four distinct
classes, each containing 18 images. The dataset was divided into training and
test data, with a split ratio of 6:4. To perform the N-way-K-shot learning, we

https://github.com/hmlr-lab/FSL_Fundus_Images.
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Table 2. Machine learning algorithms used in this study

ILP models Other learning models

from Scikit-learn [20]

1) Meta Inverse Entailment (MIE) - PyGol [25,28]
2) Meta-Interpretive Learning (MIL) - MetagolNT [4,18]
3) One-Shot Hypothesis Derivation (OSHD) - TopLog [26]
4) Inverse Entailment (IE) - Aleph [22]

1) Decision Tree (DT)
2) Naive Bayes (NB)
3) Linear Discriminant Analysis (LDA)
4) Support Vector Machine (SVM)
5) Logistic Regression (LR)
6) Random Forest (RF)
7) Perceptron (Per)
8) Multilayer Perceptron (MLP)
9) K Nearest Neighbors (KNN)

employed various learning models from different domains, including Inductive
Logic Programming (ILP), statistical machine learning, and neural network mod-
els. Specifically, we utilised 13 different learning models to compare their perfor-
mance in the context of our study. These include 4 ILP models (IE [17,22], MIL
[4,18], OSHD [26] and MIE [25,28]) and 9 non-ILP models from Scikit-learn as
listed in Table 2.

Language Bias. Next, we describe the methodology used to analyse the back-
ground knowledge and generate mode declarations and metarules for ILP sys-
tems Aleph, TopLog, and Metagol. These ILP systems heavily rely on user-
defined mode declarations and metarules, which are crucial in guiding the learn-
ing process. It is important to note that the manual generation of mode decla-
rations and metarules is a user-intensive and highly domain-specific task. The
mode declarations and metarules used in the experiment are listed in Table 3.

To begin, we carefully examined the background knowledge available for our
study. This process involved a comprehensive review of domain-specific infor-
mation, including the relationship between predicates, as well as the potential
types of hypothesis structures that could be learned from the available data.
First, we focused on identifying the relationship between predicates within the
problem domain. We examined how different predicates could be combined to
form meaningful rules and how these rules could be interconnected to represent
the underlying knowledge in a logical manner. Simultaneously, we explored the
potential hypothesis structures that could be learned from the available data.
We considered the possible combinations and arrangements of predicates to form
hypotheses that accurately represented the underlying patterns and relationships
within the data.

In our experiment, we also include the novel ILP system PyGol, and analyse
its ability to learn language biases without relying on user-defined mode declara-
tions. PyGol offers a promising approach by automating the process of learning
language biases, reducing the need for extensive user interaction and manual
input. By excluding user-defined mode declarations, PyGol aimed to automat-
ically learn the language biases solely from the available data. This approach
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Table 3. Language biases used in ILP models IE (Aleph), OSHD (TopLog) and MIL
(MetagolNT )

Mode Declarations Metarules

modeh(1, diagnosis(A, alzheimers)(+image))
modeb(1, crae(+image, -group))
modeb(1, crve(+image, -group))
modeb(1, avr(+image, -group))
modeb(1, bstda(+image, -group))
modeb(1, bstdv(+image, -group))
modeb(1, fda(+image, -group))
modeb(1, fdv(+image, -group))
modeb(1, torta(+image, -group))
modeb(1, tortv(+image, -group))
modeb(*, lteq(+group, #float))
modeb(*, gteq(+group, #float))

P(A) :- Q(A,B), R(B,C)
P(A,B) :- Q(A,C), R(A)
P(A) :-Q(B,A), R(A,C)
P(A) :-Q(A,B), R(B,C)
P(A) :-Q(A,B), R(B)
P(A) :-Q(A,B), R(A,C)

enabled us to assess PyGol’s ability to capture and represent the inherent biases
and patterns present in the dataset without any additional user intervention.

In the experimental methodology, the N-way-K-shot algorithm described in
Sect. 2 was utilised. The value of K was varied, specifically set to 2, 4, 6, 8, and 10
to represent the number of training-relevant positive examples. Concurrently, a
fixed number of five negative examples from the other three classes were chosen.
For example, if 2 positive instances were selected from the Alzheimer’s class, 5
negative instances were selected from the vascular dementia, Parkinson’s, and
healthy data sets combined. In addition, each experimental episode included
twenty iterations (N). We imposed a maximum length restriction on hypotheses
of five literals, allowing for a maximum of four conditions in the body of each
hypothesis. In addition, during the testing phase, an equal number of positive
and negative examples were chosen to sustain a 50% of default accuracy. It is
important to note that the same instance was used for both training and testing
in all assessed models.

5.3 Results and Discussions

In this section, we present the results of our experiments on Alzheimer’s, demen-
tia, and Parkinson’s diseases using various models. We compare the performance
of 13 different models, focusing on the number of positive examples used for
training, which ranges from 2 to 10. The results are visualised in three sepa-
rate graphs (Fig. 3) corresponding to each disease. From the results obtained in
our experiments, it becomes evident that the ILP models, specifically PyGol and
OSHD, exhibit superior performance compared to the other models. As depicted
in the accuracy analysis, the ILP models consistently outperform the alternative
models as the number of positive examples increases from 2 to 10. Figure 4 shows
example rules learned using PyGol.



120 D. Varghese et al.

Fig. 3. Comparing the performance of various ILP (MIE, MIL, OSHD, IE) and non-
ILP algorithms for learning diagnostic rules for Alzheimer’s, Parkinson’s, and vascular
dementia

Among the ILP models evaluated, both PyGol and OSHD (TopLog) consis-
tently demonstrate improvement in accuracy across all three diseases as the num-
ber of positive examples increases. However, Aleph did not exhibit a strong per-
formance, specifically in the experiment related to vascular dementia detection.
Notably, PyGol emerges as the frontrunner with the highest accuracy among all
the models, showcasing its exceptional ability to learn from a limited number
of positive examples effectively. These results highlight the remarkable effective-
ness of ILP models, particularly PyGol, in addressing the challenges associated
with learning from a small set of positive examples, thereby underscoring their
potential for accurate disease detection.

The MIL model did not demonstrate significant performance across the
experiments. This could be attributed to a couple of reasons. Firstly, our dataset
containing continuous values may have introduced noise, making it challenging
for MIL to find generalised hypotheses. Secondly, it is possible that the metarules
we utilised in the MIL model did not provide sufficient expressive power to gener-
ate effective hypotheses. The limitations of the metarules may have constrained
the model’s ability to capture the complex patterns and relationships present in
the data.

Furthermore, it is evident from our results that both statistical and neural
network models struggle to learn efficiently from a small number of examples.
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Fig. 4. Sample diagnostic rules learned by PyGol for Alzheimer’s disease

As the number of positive examples increases, the performance of these models
does improve to some extent, but they generally fall short compared to the
ILP models, particularly PyGol and OSHD (TopLog). This limitation can be
attributed to the inherent complexity and flexibility of statistical and neural
network models, which typically require a larger amount of data to capture the
underlying patterns and relationships effectively.

The rules shown in Fig. 4 exhibit higher interpretability and accuracy than
those obtained in our previous work [26], where the range of the numerical
values were explicitly fixed. The binning mechanism, which effectively converts
the continuous data, is crucial in improving the interpretability of these rules.
By converting the numerical data into bins, the ILP models can capture the
underlying patterns more effectively. Moreover, the binning approach contributes
to the improved accuracy of the ILP models.

6 Conclusions

The experiments have provided valuable insights into the performance of various
models for few-shot learning for neurogenerative disease detection. The results
demonstrate the effectiveness of ILP models, particularly PyGol and OSHD, in
learning from a small number of positive examples. These ILP models consis-
tently outperformed statistical and neural network models, showcasing their abil-
ity to address the challenges of few-shot learning. Additionally, the histogram-
based binning approach proved to be a valuable technique for enhancing the
interpretability and accuracy of ILP models. By discretising the continuous data,
the binning mechanism enabled the ILP models to capture meaningful thresholds
and ranges, leading to more interpretable rules. The binning approach also con-
tributed to improved accuracy by effectively capturing important features and
patterns in the data. The histogram-based binning mechanism offers a practical
solution for enhancing the interpretability and accuracy of ILP models.

In conclusion, our study demonstrates the efficacy of ILP models, particularly
PyGol, in addressing the challenge of disease detection from limited image data.
The utilisation of ILP models, coupled with the histogram-based binning mecha-
nism, provides a powerful and promising approach for accurate and interpretable
disease detection. Also, our study highlights the potential of PyGol in leveraging
limited training data for accurate and interpretable disease detection. Applying
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the histogram-based binning mechanism further enhances the performance of
ILP models, paving the way for advancements in similar disease detection from
small data using ILP.
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9. Hart, W.E., Goldbaum, M., Côté, B., Kube, P., Nelson, M.R.: Measurement and
classification of retinal vascular tortuosity. Int. J. Med. Inform. 53(2), 239–252
(1999)

10. Hubbard, L.D., Brothers, R.J., King, W.N., et al.: Methods for evaluation of
retinal microvascular abnormalities associated with hypertension/sclerosis in the
atherosclerosis risk in communities study. Ophthalmology 106(12), 2269–2280
(1999)

11. Knudtson, M., Lee, K.E., Hubbard, L., Wong, T., et al.: Revised formulas for
summarizing retinal vessel diameters. Curr. Eye Res. 27, 143–149 (2003)

12. Lalonde, M., Beaulieu, M., Gagnon, L.: Fast and robust optic disc detection using
pyramidal decomposition and Hausdorff-based template matching. IEEE Trans.
Med. Imaging 20, 1193–200 (2001)

13. London, A., Benhar, I., Schwartz, M.: The retina as a window to the brain - from
eye research to CNS disorders. Nat. Rev. Neurol. 9 (2012)

14. Mainster, M.: The fractal properties of retinal vessels: Embryological and clinical
implications. Eye 4, 235–241 (1990)

15. McGrory, S., Taylor, A.M., Kirin, et al.: Retinal microvascular network geome-
try and cognitive abilities in community-dwelling older people: the Lothian birth
cohort 1936 study. Ophthalmology 101(7), 993–998 (2017)

16. Muggleton, S.: Inductive logic programming. ACM 5, 5–11 (1994)

https://github.com/metagol/metagol
https://github.com/metagol/metagol
http://arxiv.org/abs/1711.04043


Few-Shot Learning for Neurodegenerative Diseases Using ILP 123

17. Muggleton, S.: Inverse entailment and progol. New Gener. Comput. 13, 245–286
(1995). https://doi.org/10.1007/BF03037227

18. Muggleton, S., Lin, D., Tamaddoni, N.A.: Meta-interpretive learning of higher-
order dyadic datalog: predicate invention revisited. MLJ 100, 49–73 (2015)
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