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Abstract. Plant diseases are one of the main causes of crop loss in
agriculture. Machine Learning, in particular statistical and neural nets
(NNs) approaches, have been used to help farmers identify plant diseases.
However, since new diseases continue to appear in agriculture due to cli-
mate change and other factors, we need more data-efficient approaches to
identify and classify new diseases as early as possible. Even though sta-
tistical machine learning approaches and neural nets have demonstrated
state-of-the-art results on many classification tasks, they usually require
a large amount of training data. This may not be available for emergent
plant diseases. So, data-efficient approaches are essential for an early
and precise diagnosis of new plant diseases and necessary to prevent the
disease’s spread. This study explores a data-efficient Inductive Logic Pro-
gramming (ILP) approach for plant disease classification. We compare
some ILP algorithms (including our new implementation, PyGol) with
several statistical and neural-net based machine learning algorithms on
the task of tomato plant disease classification with varying sizes of train-
ing data set (6, 10, 50 and 100 training images per disease class). The
results suggest that ILP outperforms other learning algorithms and this
is more evident when fewer training data are available.

Keywords: Few-shot Learning · Data Efficient Machine Learning ·
ILP · Inverse Entailment · Plant Disease Classification

1 Introduction

Crop cultivation and production play a crucial role in the field of agriculture. The
primary cause of agriculture losses is infected crops, which in turn reduces the
production rate. Thus, plant diseases have become a significant threat to global
food security. Also, sustainable farming can play a vital role in our climate and
the earth’s ecosystems. Agriculture needs biodiversity and vice versa. Livestock
and other crops nourish themselves and originate from existing crops, whilst bio-
diversity maintains and provides environments necessary for the production of
crops. Therefore, plant diseases pose a considerable threat to the global economy
and the codependent relationship between agriculture and biodiversity [44]. Dis-
eases can affect whole crops and cause 100% losses. It is essential to determine
what is wrong as fast as possible before it has spread or ripened.
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Moreover, the lack of access to technology in some areas means that man-
agement of these issues may be poor, and farmers could lack access to knowl-
edge on how to deal with the illnesses. Therefore, an effective plant disease
detection system could cut the cost and time spent on the issue while providing
enough knowledge to understand the impact on crops better. Several systems for
plant disease detection have been introduced in recent years—the fast progress
in machine vision and artificial intelligence speeds up the research interest in
this area [8,31,32]. Deep Neural Networks (DNNs) have demonstrated state-
of-the-art results in plant disease detection [47,53]. Also, several mobile-based
platforms were introduced to help the farmers, such as Plantix [16]. However,
existing learning algorithms require extensive sets of training examples, e.g. we
need hundreds or thousands of images to train DNNs for image classification.

However, we might only have a small number or even only one training
example in some applications. For example, an early and precise diagnosis of new
plant diseases may be essential in preventing the spread of the disease. Machine
learning algorithms that work with a few training examples (one-shot learning,
few-shot learning) would make a significant contribution to risk mitigation for
the industry. Also, according to Algorithmia’s “2020 State of Enterprise Machine
Learning” [2], 50% of respondents said it took 8–90 days to deploy one model,
with only 14% saying they could deploy in less than a week [18]. Furthermore, a
recent study on life cycle assessment of large AI models shows that the process
can emit more than 626,000 pounds of carbon dioxide equivalent-nearly five times
the lifetime emissions of the average American car [50]. It is thus imperative to
reduce the effort needed to train models as their use becomes more prevalent.

Since the rules and the knowledge in traditional expert systems are defined
and formulated by human experts, these rules and knowledge are easy for humans
to understand and interpret. In this scenario, Inductive Logic Programming
(ILP) has several advantages over most machine learning approaches. Because
logic resembles natural language, it can be easily read by humans. Also, ILP sys-
tems can perform well with very small amounts of data [36], even succeeding with
one-shot(single) data [55,56]. This efficiency is enhanced further by the inclusion
of background knowledge in the form of logic rules. ILP [37] is a machine learn-
ing formalism that induces a hypothesis that generalizes examples. ILP uses a
first-order logic program as data, whereas most forms of ML use vectors or ten-
sors to represent data. ILP models are more data-efficient, explainable, and can
incorporate human knowledge more easily compared to other forms of machine
learning. In this paper, we introduce a data-efficient machine learning approach
which can learn from small amounts of data. We illustrate its use on plant dis-
ease detection, and show that it can outperform more traditional algorithms;
especially in cases where limited training data is available.

2 Related Work

Plenty of works have been devoted to detection and classification using image
processing in history, and still, it continues to attract researchers to this field.
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We present the literature study in three parts. Part one explains few-shot learn-
ing and its importance in the machine learning community, whereas, in part two,
we reviewed plant disease classification. Part 3 will give an overview of different
feature extraction techniques.

2.1 Few-Shot Learning

In order to learn from a limited number of examples with supervised information,
a new machine learning paradigm called Few-Shot Learning (FSL) was proposed.
The seminal work toward few-shot learning dates back to the early 2000 s with
work by Li Fei-Fei et al. [29]. The authors developed a variational Bayesian
framework for image classification, using the premise that previously learned
classes could be leveraged to help forecast future ones when very few examples
are available from a given class [12,30]. More recently, Lake et al. approached
the problem of one-shot learning as an instance of few-shot, addressing one-
shot character recognition with a method called Hierarchical Bayesian Program
Learning (HBPL) [27]). A detailed study on FSL can be found in [58].

According to Mitchell [1], a learning approach can be considered as a pro-
gram that can learn from experiences (E) related to the task (T ) to improve
performance(P ). Following this definition, we can define FSL as a machine learn-
ing problem that takes the tuple < T, P, E > ; E contains only a limited number
of examples with supervised information for the target T . FSL can relieve the
burden of large scale data collection and reduce the data gathering effort for
data-intensive applications. Several learning approaches have been introduced
for FSL, and they can be mainly classified into 4 categories:

1. Weakly supervised learning
(a) Semi-supervised learning [21,42,59]
(b) Active learning [13,39]

2. Transfer learning [60,61]
3. Meta-learning [45,61]
4. ILP/MIL based methods [10,55,56]

Focusing on the research concept of this paper, Li et al. [28] proposed a semi-
supervised few-shot learning approach to solve the plant leaf disease recognition
problem. They have used the transfer learning concepts and implemented them
using deep learning methods. Extensive comparison experiments considering the
domain split and few-shot parameters (N-way, k-shot) were carried out to val-
idate the correctness and generalization of proposed semi-supervised few-shot
methods.

Chen et al. [7] used local feature matching conditional neural adaptive pro-
cesses (LFM-CNAPS) based on meta-learning that aims at detecting plant dis-
eases. They have applied intense training on datasets like 20,000 training itera-
tions. David et al. [3] presented the FSL approach to plant disease classification
using transfer learning and the Siamese network.
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2.2 Plant Disease Classification Methods

Sunil et al. [17] used multiple descriptors such as Discrete Wavelet Transform
(DWT), Principal Component Analysis (PCA) and Grey-Level Co-occurrence
Matrix (GLCM) to extract informative features of leaves. Before feature extrac-
tion, they also applied K-means clustering and histogram equalization on 256 ×
256 data items. They have done experiments on the village database of tomato
leaves and compared it with Support Vector Machine (SVM), Convolutional Neu-
ral Network (CNN) and K-Nearest Neighbor (K-NN), reporting the accuracy of
the resulting models as 88%, 99.6% and 97% respectively.

Kalpesh et al. [25] have experimented on tomato, apple, potato, and grape
leaves from the Plant-Village dataset. They used GLCM to shape and texture
features and applied feature engineering mechanisms to find highly correlated
features. The database was divided into two sets during the experiment: the
training set, which contained 70%, and the testing set, which comprised 30%. A
93% accuracy rate has been reported using the Random Forest model.

G. Saradhambal et al. [26] proposed an approach to produce a system for
automatic plant disease detection. The research was done to predict the infected
area of the leaves by applying a k-means clustering algorithm and Otsu’s classi-
fier. Both the shape and texture features were extracted in the proposed work.
The shape-oriented features extracted in this work included area, colour axis
length, eccentricity, solidity and perimeter. In contrast, the texture oriented
features were contrast, correlation, energy, homogeneity, and mean. The classi-
fication in this research was done using a neural network.

Irfan et al. [41] have performed some experiments on rice plant disease images
by using the Probabilistic Neural Network (PNN), one of the Artificial Neural
Networks (ANN) models. First, the images were pre-processed with the median
filtering method, and then the OTSU method was used for segmentation. Later,
they applied GLCM for feature extraction. The accuracy rate of this system was
76.8%.

2.3 Feature Extraction

Accuracy is the main parameter used to calculate the performance of a model.
The classifier’s accuracy depends primarily on the extracted features. So, fea-
ture extraction plays a vital role in identifying disease and improves diagnostic
accuracy. Hand-crafted feature engineering and deep learning feature extraction
are the two main types of feature extraction. Hand-crafted feature engineering
from images can be mainly divided into three types, shape, texture, and colour.
In this paper, we only consider the hand-crafted feature engineering methods.

The shape of an object is an essential and fundamental visual feature for
describing image content [5,19]. It can be considered a silhouette of the object,
invariant to rotation, scale and translation. Shape features are less developed
than their colour and texture counterparts because of the inherent complexity
of representing shapes.
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Among the visual features, colours are the most vital, reliable, and widely
used features. The colour feature descriptor of images has been used widely,
showing its robustness to background complication and independence over image
size and orientation. Colour feature extraction methods broadly fall into global
and local methods [40]. In global methods, the feature extraction process con-
siders the complete image, including global colour histogram, intersection, and
image bitmap. On the other hand, local methods consider a portion of the
image, including local colour histogram, colour correlogram, and colour difference
histogram.

Texture is the primary term used to define objects or concepts of a given
image. Tactile texture directs the natural feel, and visual texture refers to seeing
the image’s shape or contents [4]. In image processing, texture can be defined as
a function of spatial variation of the brightness intensity of the pixels. Texture
analysis is vital in computer vision cases such as object recognition, surface
defect detection, pattern recognition, and medical image analysis.

Hu Moments. Moments and the related invariants have been extensively ana-
lyzed to characterize the patterns in images in a variety of applications. We use
Hu Moments (or rather Hu moment invariants), a set of 7 numbers calculated
using central moments invariant to image transformations [22]. The first six
moments have been proved invariant to translation, scale, rotation, and reflec-
tion. While the seventh moment’s sign changes for image reflection. Hu firstly
introduces moment invariants. In [20], Hu derived six absolute orthogonal invari-
ants and one skew orthogonal invariant based upon algebraic invariants, which
are not only independent of position, size and orientation but also independent
of parallel projection

Haralick Texture. Haralick texture features are estimated from a Grey Level
Co-occurrence Matrix (GLCM), a matrix that counts the co-occurrence of neigh-
bouring grey levels in the image [18]. The GLCM is a square matrix with the
dimension of the number of grey levels N in the region of interest (ROI). The
GLCM functions characterize an image’s texture by calculating how often pairs
of pixels with distinct values and specified spatial relationships appear in an
image, composing a GLCM, and then pulling statistical estimates from this
matrix.

3 Methodology

The basic methodology of the developed system is presented schematically in
Fig. 1.

3.1 Image Data

The image data were collected from a well-known dataset, “PlantVillage” [23,43];
freely available in [35]. The dataset contains 50,000 RGB images of 14 crops.
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Fig. 1. System Description

The current paper focuses on tomato images which contain ten classes as
explained in Table 1, including healthy images. To address the unbalance in the
dataset, we created new instances which contain 50 images from each class.

Leaf Diseases and Symptoms. Over a thousand different fruit, vegetable and
herb species are cultivated worldwide. The growth process for them all is not
the same, and neither are the diseases that affect them. In an ideal world, we
would be able to quickly identify each of these species and all the diseases that
affect them, to eliminate and reduce any possible problems. To reach this ideal,
we must find the most efficient method to design an application or system to
identify the diseases. Identification must be carried out at a high level of accuracy
since this is the deciding factor on what to do next. We begin this process by
gaining some background knowledge on each disease in our chosen dataset.

In this study, we have taken the following nine plant diseases, illustrated in
Fig. 2, for the experiments, where a summary of the symptoms of each disease
can be found in Table 1:

1. Bacterial Spot
2. Mosaic Virus
3. Late Blight
4. Yellow Leaf Curl
5. Target Spot
6. Sectorial Leaf Spot
7. Spider Mites
8. Leaf Mould
9. Early Blight

3.2 Pre-processing

There are 3 main stages during pre-processing:
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(a) Healthy Leaf

(b) Bacterial Spot (c) Mosaic Virus (d) Late Blight

(e) Yellow Leaf Curl (f) Target Spot (g) Sectorial Leaf
Spot

(h) Spider Mites (i) Leaf Mould (j) Early Blight

Fig. 2. Healthy & Disease Effected Leaves

1. Resizing
2. Image Segmentation
3. Colour Space Conversion
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Table 1. Summary of Symptoms of Each Disease

Disease Symptoms Ref.

Bacterial Spot Small moist circular areas appear on the leaves,
starting off as a yellow-green colour which can
darken to brown-red

[34]

Mosaic Virus Leaves are mottled with yellow, white, and green
blister-like spots and plant growth is often stunted.
Leaves can sometimes be curled and crimpled

[24]

Late Blight Begins as pale-green or olive-green areas that
quickly enlarge to become brown-black,
water-soaked, and oily-looking

[15]

Yellow Leaf Curl small, crumpled and curl upwards. Leaves are
also marginal yellowing

[11]

Target Spot small, light brown lesions, with concentric
patterns and a yellow halo form on the leaves

[33]

Septorial Leaf Spot Circular spots appear on the underside of the older
leaves, with a yellow halo surround the spots.
Unlike early blight, Septoria leaf spots have
a brown margin and lighter grey-tan centres

[14]

Spider Mites leaf to become speckled, dull and botchy with pale
yellow and reddish-brown spots

[48]

Leaf Mould Pale green spots can be found near the tips of the
tomato plants leaves which eventually enlarge and
turn from green to brown to a purplish black

[46]

Early Blight Start towards the bottom of the plant where dark
brown spots can form with yellow concentric
halo rings on leaves and the stems of the plant

[6]

Firstly, we resized all images to 256 × 256 pixels. Then, segmentation is
performed to separate the image of the leaf from the background. The colour
of the leaf is extracted from the image. Colour space conversion is essential
since R, G, and B in RGB are all co-related to the colour luminance, i.e., We
cannot separate colour information from luminance. HSV or Hue Saturation
Value separates image luminance from colour information. This makes it easier
when we are working on or need the luminance of the image/frame. Also, using
only the Hue component makes the algorithm less sensitive to lighting variations.

3.3 Feature Extraction and Scaling

Feature extraction is the process of reducing dimensionality in the dataset by
using various methods to combine existing features to create new features. The
new features summarize what the original features tell us without losing essential
information or knowledge. Overfitting can occur when a dataset’s dimensionality
is high, an issue we look to avoid through feature extraction. Other benefits
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include better accuracy, a reduction in training time, better data visualization
and simpler explanations of our model. Feature extraction also allows our model
to understand what it is looking for and subsequently indexes and retrieves
relevant information. This information is then used to mathematically describe
various attributes, such as colours, textures, or shapes. As explained in Sect. 2.3,
we mainly extract 13 Haralick features using Grey Level Co-occurrence Matrix.

Feature scaling is an essential step in standardizing the independent features
present in the data to a common range. In this stage, we normalise the highly
varying magnitudes or values or units. If feature scaling is not performed, then
a machine learning algorithm will be biased by features with higher numerical
values and reduce the influence of features with smaller values, regardless of the
unit of the values. As part of the normalisation process, we have rounded all the
feature values to 5 decimal points.

4 Empirical Evaluation

This section empirically evaluates ILP systems against other machine learning
approaches using four differently sized datasets.

4.1 Materials and Methods

We have created four chunks of images from the original dataset. The first two
chunks contain 100 and 50 images per class. The third and fourth chunks con-
tain 10 and 6 images per class. During the experiments, we followed the hold-out
learning strategy. We have split the data in the ratio of 1:1. Since an ILP archi-
tecture always considers the learning problem as a binary classification, we have
followed a new execution strategy to have a fair comparison of both rule-based
and machine learning approaches. We have run the experiment “10” times (equal
to the number of classes; nine diseased plus one healthy), and in each run, exam-
ples from one class will be considered as a positive example/class and all others
as a negative example/class.

It is vital to generate background knowledge using first-order logic rules since
we are doing experiments using ILP. In [55], it is explained that the categorical
value method is an excellent mechanism for dealing with numerical data. We
have divided each feature into three categorical classes/ranges: low, medium,
and high, according to the local population of feature points. We will use the
feature names as predicates in the background knowledge.

We have developed our experiment using a novel ILP system, PyGol1, based
on meta inverse entailment(MIE), which is motivated by Mode-directed inverse
entailment [36] but never uses mode to generate the bottom clause. The sig-
nificant merit of this system is that the training phase is fully implemented in
Python, and to have a fair comparison during the test phase, PyGol uses a
Prolog interpreter. During the test phase, PyGol used a python-based approach

1 Available from: https://github.com/danyvarghese/PyGol.

https://github.com/danyvarghese/PyGol
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from the system PyILP [57], which uses PySwip [52] in the back-end. PyGol can
automatically generate the first-order logic database, i.e. background knowledge,
from relational data. A schematic diagram of generating the logic rules from the
relational dataset is shown in Fig. 3.

Fig. 3. Automatic generation of logical rules from relational dataset

PyILP is a novel, user-friendly Python interface for Inductive Logic pro-
gramming(ILP) systems for teaching relational machine learning and comparing
different algorithms, whereas PySwip act as the bridge between python and
Prolog. PyGol enables us to do every experiment in a single platform called
Jupyter Notebook. We have compared PyGol with two other state-of-the-art
ILP systems, seven statistical machine learning approaches and two neural net-
work approaches.

Aleph [49] is a state-of-the-art ILP algorithm that has been used for several
real-time applications and is one of the ILP systems we are considering for empir-
ical evaluation. Like PyGol, Aleph also uses the advantage of inverse entailment,
but mode-directed inverse entailment.

The second system for our consideration is Metagol [9] which is developed
based on the concept of meta-interpretive learning (MIL) [38] and has been suc-
cessfully trialled in several applications [36, 10]. Learning recursive rules and
predicate invention is the major contribution of MIL to the ILP community, but
they cannot deal with noisy input, a significant disadvantage. In order to over-
come this issue, a noise-tolerant version of metagol is introduced as metagol nt
[36,51]. During the empirical evaluation, we use the python version of metagol nt,
which is available from [54]. Other approaches used for evaluation are listed
below;
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1. Statistical Machine Learning
(a) Decision Tree (DT)
(b) Naive Bayes (NB)
(c) Support Vector Machines (SVM)
(d) Logical Regression (LR)
(e) Latent Dirichlet Allocation (LDA)
(f) K-Nearest Neighbors (KNN)
(g) Random Forest (RF)

2. Artificial Neural Network Learning
(a) Perceptron (Per.)
(b) Multi-Layer Perceptron (MLP)

5 Results and Discussion

Figures 4, 5, 6 and 7 will provide an overall idea about each model on four differ-
ent datasets. We have plotted overall performance and average F1-Score obtained
on each run and an execution time comparison on different ILP systems. In each
figure, the subplot ‘a’ indicates the system’s overall performance in each run.
The sub-plot ‘b’ indicates the F1 score during the classification. The F1 score is
more important than accuracy in this scenario, since each run can be considered
an imbalanced classification and will also sum up the predictive performance of
a model.

While analysing each box plot, it is clear that machine learning approaches
other than ILP systems respond differently with each dataset, but the ILP system
responds almost consistently. In almost all cases, the accuracy of the ILP system
lies between 80%–100%, which shows its efficiency compared to other models for
classification. Also, from the box plot, it is clear that the median of accuracies
from each run for typical machine learning approaches is always around 90%
which is the default accuracy. From the plots related to the F1 score, other than
the decision tree, none of them could achieve an average value of 0.5, meaning
the predictive performance of those systems is worse than random.

Focusing on the ILP systems, as the number of examples in each class
increases, Aleph’s performance improves. However, for metagol nt, it deterio-
rates. Both PyGol and Aleph outperform all the statistical approaches, with a
large-scale difference. We have done some experiments with CNN, but it couldn’t
perform well (just giving predictive accuracy always) since our dataset is imbal-
anced w.r.t. to the concept of a binary classification problem. That is the reason
why we did not report the results from CNN. We also noticed that the average
response time of PyGol is just 7 s.

Aleph’s learning procedure depends on the order of examples given and also
follows a greedy approach while learning. During the learning cycle, a seed sam-
ple will be chosen then a candidate hypothesis will be generated from the bottom
clause, and examples covered by the theory are removed, and the process contin-
ues. But PyGol follows a global theory generation procedure in which the system
generates all the possible candidate hypotheses from all the examples.



332 D. Varghese et al.

Fig. 4. Performance comparison on Dataset with 6 images per class

Fig. 5. Performance comparison on Dataset with 10 images per class

Fig. 6. Performance comparison on Dataset with 50 images per class



Few-Shot Learning for Plant Disease Classification Using ILP 333

Fig. 7. Performance comparison on Dataset with 100 images per class

6 Conclusion

The objective of this study is to introduce a few-shot model using ILP for plant
disease classification. In order to evaluate the data efficiency of each system,
we have divided the image dataset into four chunks containing 6, 10, 50 and
100 images per class and experiments on individual chunks. As discussed, the
ILP approaches significantly outperform all the machine learning approaches
selected, even a convolutional neural network. It is also evident from the per-
formance evaluation that machine learning approaches struggled to learn from
the small datasets of 6 or 10 images per class. However, ILP approaches perform
well in this scenario too. This shows that the proposed approach of using ILP is
data-efficient with respect to other statistical machine learning approaches. Fur-
thermore, the proposed PyGol approach can reduce user interaction compared
to other ILP systems since it does not use mode declarations and meta-rules as
in Aleph and MIL, respectively. It shows the potential of PyGol for automated
data science.
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