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Abstract. Fractals are geometric patterns with identical characteristics in each of
their component parts. They are used to depict features which have recurring pat-
terns at ever-smaller scales. This study offers a technique for learning from frac-
tal images using Meta-Interpretative Learning (MIL). MIL has previously been
employed for few-shot learning from geometrical shapes (e.g. regular polygons)
and has exhibited significantly higher accuracy when compared to Convolutional
Neural Networks (CNN). Our objective is to illustrate the application of MIL in
learning from fractal images.We first generate a dataset of images of simple fractal
and non-fractal geometries and then we implement a technique to learn recursive
rules which describe fractal geometries. Our approach uses graphs extracted from
images as background knowledge. Finally,we evaluate our approach againstCNN-
based approaches, such as Siamese Net, VGG19, ResNet50 and DenseNet169.

Keywords: Meta Interpretive Learning · Learning recursive rules · Few-shot
learning · Computer Vision · Fractals

1 Introduction

The concept of fractals originated from a paper by Benoit Mandelbrot [16], in which
he discussed the paradox of measuring coastlines. The length of line segments used to
represent a coastline greatly affects the measured length, the smaller the line segment
the greater the measured length, and vice versa. This idea of the infinite complexity
of the boundary (the change in detail over the change in scale) introduced the concept
of a fractal dimension, which the name fractal was derived from. One of the earliest
examples of a pure mathematical fractal is the Mandelbrot set [17], calculated by taking
a value on the complex plain and recursively applying the function:

Znew = Z2
old +C (1)

In the Eq. 1, Z and C represent complex numbers, and the iterative process commences
from an initial value set to zero. As this formula is repeatedly executed, it produces a
sequence of complex numbers. By converting a grid point into a complex value C and
tracking the iteration count using Zold while evaluating the threshold range, typically
−2 to 2, for Znew, we can determine whether the point resides within the fractal or lies
outside of it.

In nature, fractals are generally found in branching or spiral patterns (see Fig. 1).
Examples of branching patterns include river beds, lightning, tree growth, and blood
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Fig. 1. The presence of fractals in nature and their inherent recursive nature. This recur-
sive iteration persists as each component divides into smaller components until reaching
the desired level of intricacy or intricateness.

vessels. Examples of spiral patterns can be found in both the animal and plant kingdom
as well as fluid dynamics, and galaxies. As many patterns in nature can be described as
fractals, any generalisable computer vision approach which can capture fractal geome-
tries would be useful for describing these structures. The primary technique for detect-
ing fractals is through the use of fractal dimension (FD), While FD can account for
irregular shapes within its range. Furthermore, there is ongoing research in the field of
evaluating fractal dimension [8], though it may not be suitable for all types of fractals.

To fully capture the essence of a fractal, an illustrative subject is needed for its defi-
nition. Our primary focus in this paper lies in examining Sierpinski fractals through the
extraction of graphs from images. Sierpinski fractals possess a well-defined structure
characterised by self-similarity, and their iteration can be assessed through computa-
tional analysis. Examples of Sierpinski fractals are shown in Fig. 2. We show how to
create logical facts about images which can then be utilised by meta-interpretive learn-
ing for generating rules describing the structure and internal relations of these images.
This approach allowed us to learn recursive rules describing fractals using only infor-
mation extracted from pixel data.

2 Related Work

Fractals and Deep Learning. In the field of visual object recognition, recent stud-
ies have utilised Deep Learning to pre-train models from randomly generated fractal
images. The authors of [22] introduced a fractal learning approach which uses a gradi-
ent descent algorithm to acquire the parameters that govern a fractal image. Larsson et
al. [14] introduced a strategy for CNN to classify fractals. While previous work based
on Deep Learning predominantly relies on ’black-box’ classifiers, our approach can
generate rules describing fractals and their intricate patterns.

Fractal and Inversion. The task of determining the parameters associated with a given
fractal image has been an unresolved challenge for a considerable period of time,
Vrscay et al. [23] provided an inverse method to find iterated function system (IFS)
for fractal construction. In an earlier study [3], researchers explored the solution to the
inverse problem of fractal trees, aiming to describe complex patterns using the principle
of contraction mapping.
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Fig. 2. (a) Quantum density of electrons on the surface of copper can be characterised
as a Sierpinski fractal [5,12] (b) Examples of Sierpinski fractals from our dataset

Other Methods. A technique to gauge fractal pattern utilising self-similarity with frac-
tal dimension proposed by Luis et al. [15]. Bölviken et al. [4] proposed their work on
geochemical and geophysical data to analyse their fractal properties. A neuro-symbolic
approach [1] leverages logic programming to represent iterated function systems (IFS).
In their research, recurrent radial basis function networks are employed to approximate
a fractal’s graph. They introduced a technique for generating a logic program from an
IFS, although it does not involve direct learning from images.

3 Methodology

Our methodology for learning from fractal images involves feature extraction from the
images and the creation of a background knowledge file. Subsequently, our learning
algorithm detects shapes along with their distinct characteristics, culminating in the
creation of a recursive rule through the utilisation of our MIL technique. Employing
MIL offers the benefit of crafting a recursive rule with minimal complexity, enabling the
resulting rule to succinctly depict the structure of fractals. We demonstrate our approach
in the task of learning rules for Sierpinski triangle fractals.

3.1 Feature Extraction

Edge Discovery. The method for edge discovery was adapted from the logical vision
approach [7]. Edges were discovered using a stochastic algorithm.

Firstly a collection of random edge points in an image would be found. Edge points
were discovered through the application of a Sobel filter over the image. With the inclu-
sion of an adjustable constant to act as a threshold value, each pixel above this value
was classed as an edge point.

Edges would then be conjectured between two randomly selected edge points from
this set, if an edge was found it was extended and then added to a set of edges and any
consumed edge points would be removed from the first set. In the case where a con-
jectured edge failed a line which intersects the line segment between the two selected
points would be created, and all edge points along this would be added to the set of edge
points. This process was iterated until no edge points remained that were not consumed
by a discovered edge.
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Network Creation. In this section we describe the graph construction from the found
edges. To achieve this, first, endpoints of edges close to one another were grouped
together, to form nodes. Next, if any edge exists between these nodes representing
groups of endpoints then these edges are added to the network. As there can be only
one edge between nodes and the graph is bidirectional, this step needs no additional
checks to avoid duplicate edges. Each node in this resulting graph was given a position
property, calculated from the average position of the constituent endpoints.

Once this network was created the next step was to split edges where they passed
through nodes, by checking each edge for nodes which lie on that line segment it
describes. The nodes that lay on the edge were ordered by their distance from one
node of the edge in case there was more than 1. Finally, the original edge was deleted
and 2 or more new edges were created which when joined together formed this original
edge.

Finally, nodes that were considered redundant were removed. Redundant nodes
were defined as nodes that have only 2 edges when the angle between those edges
is below a given threshold value. Once these nodes were found they could be removed
and the edges which passed through the node could be merged into one edge.

3.2 Dataset and Background Knowledge

The dataset1 comprises images with a resolution of 1000× 1000 pixels, categorised as
either positive or negative examples of Sierpinski fractals. Each constituent shape of
the fractals was given a different fill colour randomly, and the rotation of the image
was also randomly selected, along with the depth of the recursion giving us fractals
of different orders. These random factors allowed for the generation of many different
versions of the same fractals to be produced. Examples of Sierpinski fractals from our
dataset are shown in Fig. 2.b. During the feature extraction phase, we create a list of
background knowledge that includes factual information. Within each image, there are
multiple nodes, each node characterized by its X and Y coordinates.

Listing 1: Sample background knowledge for a Sierpinski triangle

img nodes ( img 45 , [ n45 0 , n45 1 , n45 2 ] ) .
node pos ( n45 0 , [ 916 , 4 9 4 ] ) .
node pos ( n45 1 , [ 367 , 1 0 3 ] ) .
node pos ( n45 2 , [ 288 , 7 6 1 ] ) .
edge ( n45 0 , n45 1 ) . edge ( n45 0 , n45 2 ) .
edge ( n45 1 , n45 0 ) . edge ( n45 1 , n45 2 ) .
edge ( n45 2 , n45 0 ) . edge ( n45 2 , n45 1 ) .

Shape Analysis. To analyse the extracted nodes from the graph and measure their
distance with positive samples like triangles, rectangles, and trees, we utilise Frechet
Distance [9]. Our approach involves implementing Convex Hull [2] to identify the

1 The dataset and the source codes used in this paper are available from https://github.com/hmlr-
lab/MIL-Fractals.

https://github.com/hmlr-lab/MIL-Fractals
https://github.com/hmlr-lab/MIL-Fractals
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Fig. 3. (a) Feature extractions from Sierspenski fractal (b) we first extract nodes from
each edges (c) a convex hull algorithm is employed to detect bounding area, (d)
Douglas-Peucker algorithm removes extra nodes and detects corners (e) triangles con-
nected to each nodes are re-scaled bigger to cover all inner nodes.

bounding region, followed by the application of the Douglas-Peucker algorithm [20]
to simplify the nodes and locate corners. Ultimately, we employ the Frechet Distance
technique to detect shapes. Please refer to Fig. 3 for further details. As shown in the
code below, shape A is detected as a triangle using the predicate shape which calls
predicate shapeAnalysis to match A with a known shape based on Frechet Distance.

Listing 2: Shape detection predicates.

shape (A, Shape ) : − convexHul l (A, Nodes ) ,
s h a p eAna l y s i s ( Nodes , Shape ) .

i n n e r Sh ap e s (A, B) : − convex (A, Hu l l ) ,
r amerDoug l a sPeucke r ( Hul l , Co rne r s ) ,
i n n e r Sh ap e s (A, Corners , B ) .

s i n g l e Sh a p e (A) : − l e n (A, Len ) , Len =< 4 .

3.3 Meta-interpretive Learning (MIL)

Meta-Interpretive Learning (MIL) is a form of Inductive Logic Programming (ILP)
[18,19]. The learning process of MIL involves utilising a Prolog meta-interpreter to
formulate hypotheses using background knowledge and training examples. This sub-
section elucidates our approach using a specific MIL implementation called Metagol.

Metagol. Metagol [6] is an implementation of MIL which uses background knowledge
along with meta-rules to learn logic programs from positive and negative examples.

Metarules. When describing meta-rules for use by Metagol there a 3 required argu-
ments, Subs, Head, and Body. Optionally the 1st argument can be a name for the meta-
rule.

metarule(const_cond, [P,Q,B],[P,A],[[Q,A,B]]).

Symbols included in the subs list are substituted for some constant value such as an
atom or predicate name, any symbols not included are considered variables for the rule
built using the meta-rule. The head and body describe the two parts of the clause created
using the meta-rule, where the head is implied by the body (Table 1).
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Table 1. Table of Metarules used

Name Substitutions Meta-Rule

property P,Q,R P(A)← Q(A, B),R(B)

name P,Q,R,B P(A, B)← Q(A, B),R(A)

name P,Q,R,F P(A)← Q(A, B), F(B,R)

name P,Q,R,B P(A)← Q(A, B),R(A)

Identity P,Q P(A)← Q(A)

Integrated Background Knowledge (IBK). Often, for learning simpler programs,
standard dyadic metarules which are commonly used are good enough, in the case of
attempting to learn more complex programs sometimes higher-order logic can be used.
Integrated Background Knowledge (IBK) allows Metagol to learn higher-order logic
programs, using predicates as arguments. This is especially useful when operating on
lists which applies to the task of learning from lists of nodes, or lists of cycles. Use-
ful predicates for IBK include quantification predicates any and all. The predicate any
implements existential quantification, returning true if any element in a list returns true
for a given predicate. This can also be extended by giving a second argument to pass a
relational predicate to this higher-order predicate:

∃a ∈ List(P(a)),∃a ∈ List(P(a, b)) (2)

The predicate all implements universal quantification, holding true only if all ele-
ments in a list are true for the given predicate. Also similarly to any, a second argument
can be used to allow for relational predicates:

∀a ∈ List(P(a)),∀a ∈ List(P(a, b)) (3)

3.4 Comparing with Neural Networks

To evaluate the performance of our method we compared our results against several neu-
ral networks, VGG, Densenet, Resnet, and Siamese Net. VGG is a deep convolutional
network that performed well in the ImageNet 2014 challenge [21]. Resnet extends tradi-
tional Convolutional networks with residual connections skipping over layers allowing
for deeper networks with less gradient loss [10]. Densenets improve upon residual net-
works by introducing the concept of densely connected residual blocks which allow
them to achieve high performances with less required training parameters [11]. Deep
convolutional neural networks can achieve high levels of accuracy when given large
numbers of images to train on. Conversely, Siamese neural networks can be trained for
one-shot image recognition [13].

4 Experiments

In this section we examine the following null hypotheses in order to evaluate our pro-
posed MIL-based approach described in the previous section.
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Fig. 4. Comparing the average accuracy of MIL and CNN in the task of learning from
fractal images.

Null Hypothesis 1 Our MIL-based approach cannot generate rules to describe fractals.
Null Hypothesis 2 Our MIL-based approach cannot outperform neural networks in the

task of learning from fractal images.

We initiate the process with a single-shot sample, initially comprising a positive
and a negative example. Subsequently, we assess our models by incrementally aug-
menting the number of training examples (i.e., 2, 4, 6, 8, 100, and 950). During each
learning episode, we regenerate training samples 5 times, while the test samples remain
unchanged. The test dataset comprises 100 examples, evenly divided between 50 pos-
itive and 50 negative examples. Figure 4 compares the predictive accuracy of MIL vs.
CNN algorithms. We measured the learning times on a MacBook laptop with 16GB of
RAM and an Apple M1 CPU with 10 cores. The average timings are shown in Table 2.
We provide this table as a reference for the point where MIL accuracy approaches 100%
after 6 examples (3 positives and 3 negatives) as shown in Fig. 4.

The rule shown in Listing 3 was learned by MIL from three positive and three nega-
tive examples. This recursive rule is a compact and accurate description of a Sierspenski
triangle. The Null Hypothesis 1 is therefore rejected.

Listing 3: The final rule obtained by MIL after considering three positive and three
negative training examples.

f r a c t a l (A, t r i a n g l e ) : − shape (A, t r i a n g l e ) ,
f r a c t a l 1 (A ) .

f r a c t a l 1 (A) : − i n n e r Sh ap e s (A, B) ,
any (B , f r a c t a l 1 ) .

f r a c t a l 1 (A) : − s i n g l e Sh a p e (A ) .

According to Fig. 4, the Null Hypothesis 2 is also rejected as MIL achieved 100%
accuracy after only six training examples but the best performing CNN algorithm in
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this study (i.e. Siamese Net) achieved around 70% after around 950 training exam-
ples. MIL, with its unique combination of symbolic reasoning and learning techniques,
exhibits remarkable capabilities in extracting meaningful patterns and insights from
fractal images. By leveraging the power of meta-level reasoning, MIL can dynami-
cally adapt its learning strategies, adjusting and optimising its models to effectively
capture the intricate structures inherent in fractal data. Through the incorporation of
interpretability and explainability into its learning process, MIL not only achieves high
accuracy in modeling fractals but also provides insights into the underlying generative
mechanism of the fractal.

Table 2. The average learning time for 6 training examples (3 positive and 3 negative)

Method MIL ResNet50 DensNet169 Siamese Net VGG19

Learning time 58 ms 570 ms 780 ms 1490 ms 1730 ms

5 Conclusions

We introduced a technique for acquiring knowledge about fractal geometries through
graph extraction and MIL. By extracting edges and constructing graphs from them, we
formed a representation of the image that could serve as background knowledge for
MIL. Our findings demonstrate that even with a limited number of examples, our app-
roach can effectively learn recursive logic programs that provide accurate descriptions
of the Sierpinski triangle. When compared to various neural network architectures, our
method surpassed them in performance while requiring fewer examples for learning.
As future work, we will expand upon the method laid out in this paper to learn rules
for a wide range of both artificial and naturally occurring fractals. Including branching
fractals and the Sierpinski carpet, and natural structures such as river beds or veins in
retinal imaging. By leveraging extended background knowledge utilising concepts of
graph theory and geometry this representation has the potential to be used in broader
applications in logical computer vision outside of classifying fractals.
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