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Abstract. Abductive reasoning plays an essential part in day-to-day
problem-solving. It has been considered a powerful mechanism for hypo-
thetical reasoning in the presence of incomplete knowledge; a form of
“common sense” reasoning. In machine learning, abduction is viewed as
a conceptual method in which data and the bond that jointly brings
the different types of inference. The traditional Mode-Directed Inverse
Entailment (MDIE) based systems such as Progol and Aleph for the
abduction were not data-efficient since their execution time with the
large dataset was too long. We present a new abductive learning pro-
cedure using Meta Inverse Entailment (MIE). MIE is similar to Mode-
Directed Inverse Entailment (MDIE) but does not require user-defined
mode declarations. In this paper, we use an implementation of MIE in
Python called PyGol. We evaluate and compare this approach to reveal
the microbial interactions in the ecosystem with state-of-art-of methods
for abduction, such as Progol and Aleph. Our results show that PyGol
has comparable predictive accuracies but is significantly faster than Pro-
gol and Aleph.

Keywords: Abduction · Learning Microbial Interactions · Abductive
ILP · Meta Inverse Entailment · PyGol · Bottom Clause of Relevant
Literals

1 Introduction

Interactions between microbes are indispensable to successfully establishing and
maintaining a population of microbes. For example, microbial communities in
the soil significantly protect plants from diseases and abiotic stresses or increase
nutrient uptake. This is one of the many ways in which the microbial commu-
nity plays a vital role in preventing diseases caused by microbes that are them-
selves infectious. Microbial communities are defined by the interactions that take
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place between their members. The most recent mechanisms for meta-barcoding,
such as DNA sequencing in conjunction with bio-informatics processes, are able
to provide an estimate of the amount of information available on the various
microbes present in a community. Machine learning models can infer an interac-
tion network that can generalise the interaction between the microbes by using
this information about the abundance and the rules of interactions as background
knowledge (please refer to Fig. 1).
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Fig. 1. Different steps involved in Microbial Interaction

Prior studies [2] introduced an Abductive/Inductive Logic Programming
(A/ILP) framework to infer microbial interactions from abundance data, and
Progol 5.0 [12] was used to infer the interactions in terms of logical rules and
presented as a classification problem. This promising study proposes the idea
of inferring ecological interaction information from diverse ecosystems, which
is currently not possible to study using other methods. However, mode-directed
inverse entailment systems such as Progol [12] and Aleph [20] are data-inefficient,
emphasising the need for a more efficient approach to abduction.

Inductive logic programming [16] is a machine learning form that induces
a hypothesis that generalises examples and can deal with very few amounts of
data, even from one-shot data. It can also include background knowledge in the
form of logic rules [23,24]. In contrast, most forms of ML use vectors or tensors
to represent data. The ILP models are more data-efficient, explainable, and can
incorporate human knowledge compared to other forms of machine learning.

Abduction is also counted as a synthetic form of reasoning along with induc-
tion. In abductive learning, logic generates new knowledge not directly included
in the current theory. This sort of learning can be referred to as knowledge-
intensive learning, where the new information generated drives to complete the
current knowledge of the problem domain as described in the given theory. Early
abduction works by Michalski [10], Ourston and Mooney [18], and Abe et al. [1]
consider abductive learning a theory revision operator for specifying where the
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existing theory could be modified to accommodate the new learning data. Later
it was realised that the role of abduction in learning could be strengthened by
induction as in Progol 5.0 [12] and HAIL [19].

This paper presents abduction as an inductive approach using a novel method
called Meta Inverse Entailment (MIE). In Meta Inverse Entailment (MIE), each
hypothesis clause is derived from a bottom clause of relevant literals and meta
theory. A bottom clause of relevant literals is a notion that efficiently collects
all literals related to an example from the background knowledge and acts as a
bound for the hypothesis search while abducing facts. Meta theory is a kind of
language bias induced automatically from background knowledge. We implement
the new learning framework for abduction using MIE in a system called PyGol1
and presented as a Python package.

2 Background and Related Work

Abductive learning based on Inverse Entailment (IE) was first introduced in [15]
and implemented in Progol 5.0, where the ‘start-set’ routine is regarded as a
form of abduction. The system HAIL [19] also uses Bottom Set, an advanced
concept from the bottom clause, and it is presented as a generalisation of Progol.
The state-of-the-art system Aleph [20] can also perform abduction using Moyle’s
ALECTO [11] approach.

Progol 5.0 uses a standard covering algorithm where each example is gen-
eralised using a multi-predicate search [14]. This search will be done over all
the predicates in the mode declarations. The two-stage process, which includes
a “start-set”, can be considered as a complex procedure. First, the algorithm
generates the bottom clause for a seed example in the start-set and then does a
covering test to find the rule covering the given example with maximum compres-
sion. Most ILP systems, such as Progol and Aleph, select a positive example and
then explore its implied hypothesis space. In all cases, computing the cover set
of a hypothesis is a costly process that usually involves sequentially considering
all negative and relevant positive examples.

HAIL uses the ‘bottom set’ routine from Progol 5.0 to compute the body
atoms of each Kernel clause, and M-SEARCH performs a recursive specific to
general search through the collection subsumption lattices obtained from the
given Kernel Set. The high-level operation of the HAIL includes abduce, deduce
and search. Like its predecessor, Progol 5.0, HAIL also uses coverage testing.
HAIL try to overcome some of the limitations of Progol and can find better-
quality hypothesis than Progol. Also, one can consider HAIL as a greedy app-
roach as Progol and Aleph, since HAIL begins by removing the examples covered
in each stage.

The basic abductive procedure used by Aleph is a simplified variant of
Moyle’s ALECTO [11]. The basic workflow of ALECTO is as follows: For each
positive example, an “abductive explanation” is generated. This explanation is

1 Available from https://github.com/PyGol.

https://github.com/PyGol
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a set of ground atoms. The union of abductive explanations from all positive
examples is formed. These are then generalized to give the final theory. The
ground atoms in an abductive explanation are generated using Yamamoto’s
SOLD resolution or SOLDR [28]. Next, we introduce the fundamental defini-
tions of induction and abduction. We assume the reader to be familiar with the
basic concepts of logic programming and inductive logic programming [17]. The
goal of an ILP system is to induce a logic program, H, that entails all posi-
tive examples and none of the negative examples while some prior knowledge or
background knowledge is given. Formally we define the ILP as in Definition 1.

Definition 1 (An ILP learning approach). Let E+, E− be the set of positive
and negative examples, and B be the background knowledge. Then ILP system
learn hypothesis H and has to satisfy:

Prior Satisfiability : B ∧ E− �|= �
Prior Necessity : B �|= E+

Posterior Satisfiability : B ∧ E− ∧ H �|= �
Posterior Sufficiency : B ∧ H |= E+

The role of abduction has been demonstrated in various applications [7,21,22].
A/ILP, a high-level knowledge-representation framework, solves problems declar-
atively based on abductive reasoning. It extends regular logic programming by
allowing some predicates to be incompletely defined and declared as abducible
predicates. In the context of formal logic, abduction is often defined as follows.
Given a logical theory, T represents the expert knowledge, and a formula Q rep-
resents an observation on the problem domain, abductive inference searches for
an explanation formula E such that:

– E is satisfiable w.r.t. T and
– it holds that T |= E → Q

In general, ε will be subjected to further restrictions, such as the aforementioned
minimality criteria and the explanation formula’s form (e.g. by restricting the
predicates that may appear in it). This view defines an abductive explanation
of observation as a rule which logically entails the observation itself. Formally,
we can define abduction as in Definition 2. The definitions are taken from [8].

Definition 2. Given an abductive logic theory (P,A,C), an abductive explana-
tion for a query Q is a set Λ ⊆ A of ground abducible atoms such that:

– P ∨ Λ |= Q
– P ∨ Λ |= C
– P ∨ Λ is consistent

3 Abduction via Meta Inverse Entailment

Abductive learning is a machine learning approach which generates explanation
H from a given observation E and background knowledge B. Abduction can be
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regarded as a form of induction in various ways. Michalski [10] described abduc-
tion in terms of induction as follows: “Given a background knowledge Th and
observations O, induction hypothesises a premise H, consistent with Th, such as
H∨Th |= O . . . Induction is viewed as ‘tracing backwards’ this relationship”. In
this section, we introduce a new inductive learning approach called Meta Inverse
Entailment (MIE) and present abduction as a form of MIE.

Many ILP methods use the reality that creating hypotheses incrementally as
a series of short theories, each covering a few samples at a time, is usually more
comfortable than making one large theory covering most of the examples. For
this reason, several systems employ a so-called covering-loop [9] that uses one
seed example at a time. In an ILP system, the computational cost of the search
depends mainly on the cost of subsumption, which is used to evaluate the clause
and then on the size of the search space. ILP systems use different kinds of biases
to have a tractable search. For example, a language bias restricts the size of an
acceptable hypothesis, and a search bias determines the way of the search.

Instead of selecting a random example, MIE generates the hypothesis space
from all the examples using a bottom clause of relevant literals (BCRL) and
meta theory (MT). MIE takes advantage of IE and MIL by introducing two
novel concepts: the bottom clause of relevant literals and meta theory. BCRL
bounds the hypothesis space search of MIE, and MT will guide the search. Unlike
other metarule-based approaches [4,5,13] in ILP, MIE introduces a higher-order
language bias, meta theory, synthesizing automatically from the background
knowledge. The complete explanation of MIE is out of this report’s scope, so we
explain only the major concepts.

Definition 3 (Related literals). Let L1 = P (s1, s2, · · · , sn) and L2 =
Q(t1, t2, · · · , tm) be two ground literals and K be a set of constant terms then
L1 and L2 are related literals if they have any common terms other than terms
in K.

Example 1. Let L1 = has_car(train1, car1), L2 = open(car1), L3 =
closed(car2) and K = {} then according to Definition 3, L1 and L2 are related
literals but neither L1 and L3 nor L2 and L3.

In the Example 1, L1 and L2 are connected since they have a common term car1,
but there is no common term between either L1 and L3 or L2 and L3.

Example 2. Let L1 = has_load(car1, circle, 2), L2 = has_load(car2, circle, 3)
and K = {circle} then according to Definition 3, L1 and L2 are not related
literals because the common term between L1 and L2 is present in K.

Ordered clauses will be beneficial for collecting all the related literals of e from
B. An ordered clause, denoted by

−→
C , is a sequence of literals where the order and

duplication of literal matter. In ILP, the usage of ordered clauses is not novel.
For instance, it may be necessary to duplicate literals when using an upward
refinement operator to invert an elementary substitution. Ordered clauses are
used since reusing literals is forbidden in the standard encoding of clauses [17].
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Definition 4 (
−→B ). Let B be the background knowledge.

−→B is an ordered clause
of ground literals constructed from B without any repetition of literals.

Definition 5 (Relevant literals of an example (
−→Re)). Let B be the back-

ground knowledge,
−→B be the ordered clause constructed from B as defined in

Definition 4, and e be an example. Then the relevant literals of e is defined as−→Re = L1 ∨ L2 ∨ · · · ∨ Ln if and only if Li ∈ −→B and Li be related literal of either
Lj or e such that 1 ≤ j < i.

Definition 6 (Bottom clause of relevant literals (⊥e,B)). Let B be the
background knowledge, e be a definite clause representing an example, K as
defined in Definition 3 and

−→Re be the relevant literals of example e as defined
in the Definition 5. Then bottom clause of relevant literals of e, denoted as ⊥e,B

is
−→Re where each unique occurrence of term ti �∈ K replaced with a new variable.

The bottom clause of relevant literals introduced in MIE can resemble the
bottom clause concept in Progol, but it never uses language bias like mode
declaration. The Algorithm1 sketches a search-based algorithm to generate the
bottom clause of relevant literals. Now, we define a language set for a bottom
clause of relevant literals, denoted as

−→L⊥, as the set of definite ordered clauses
which are sequential generalisations of ⊥e,B . This chapter focuses on languages
such as

−→L⊥, comprised of clauses exhibiting the characteristics of generalisations
derived from a flattened bottom clause. Consequently, all the clauses within the
language

−→L⊥ can be effectively treated function-free.

Definition 7 (
−→L⊥). Let ⊥e,B be the bottom clause of relevant literals as defined

in Definition 6 and
−→
C a definite ordered clause.

−→
C is in

−→L⊥ if and only if there
exists a substitution θ such that

−→
C θ is a subsequence of ⊥e,B.

Definition 8 (Meta theory (M)). A meta theory is a higher-order well-
formed-formula

P (s1, · · · , sm) ← Q1(t1, · · · , tn), Q2(u1, · · · , up), · · · , QN (· · · ) (1)

where P , Qi are existentially quantified variables and t1, ui, · · · are universally
quantified variables and P ∧Qi∧{ti}∧{ui}∧· · · = ∅. m is the arity of arguments
of the target literal, and N is the number of literals in the body of a meta theory.
Two kinds of substitution will be involved using meta theory during the learning
phase, such as substitution on existentially and universally quantified variables.

Definition 9 (Meta substitution). A meta substitution Θ is a set
{v1/p1, · · · , vn/pn} where each vi is a distinct variable, and each pi is a predi-
cate. Here, ti represents the value that is substituted for the predicate pi.
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Algorithm 1. Algorithm to generate ⊥e,B

Input: Background knowledge (B), pass = i, example (e), constant set (K)
HashFn(t): A function which uniquely maps terms to variables
GenerateLiteral(Pred, [Terms]): A function generates a literal with Pred as predicate
and [Terms] as its arguments.
Output: ⊥E,B

1: Let Pred be the predicate related to the example
2: BC = ∅
3: HeadTerms = ∅
4: TermSet = ∅
5: BodyLiterals = ∅
6: for each term ei in e do
7: if ei �∈ K then
8: push HashFn(ei) to HeadTerms
9: push ei to TermSet

10: else
11: push ei to HeadTerms
12: end if
13: end for
14: Let h = GenerateLiteral(Pred,HeadTerms)
15: k=1
16: while k ≤ pass do
17: for each bi in B do
18: Let Pbi be the predicate related to bi
19: if any term of bi in TermSet then
20: TempTerms = ∅
21: for each term ti of bi do
22: if ti �∈ K then
23: push HashFn(ti) to TempTerms
24: push ti to TermSet
25: else
26: push ti TempTerms
27: end if
28: end for
29: if generate_literal(Pbi , T empTerms) �∈ BodyLiterals then
30: push generate_literal(Pbi , T empTerms) to BodyLiterals
31: end if
32: end if
33: end for
34: k = k+1
35: end while
36: return BC = h ← BodyLiterals

Definition 10 (
−−→LM). Let ⊥e,B be the bottom clause of relevant literals as

defined in Definition 6 and
−→
C be a meta theory as defined in Definition 8.

−→
C

is in
−−→LM if and only if there exists a meta substituition Θ such that

−→
C Θ is a

subsequence of ⊥e,B.
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The definition of meta theory and meta-substitution is motivated by the con-
cept of metarules [3]. The incompleteness of Progol was discussed by Yamamoto
[26,27], and one of the incompleteness is due to its inability to generate multiple
hypotheses from a single bottom clause. In MIE, we solved the incompleteness
of Progol by introducing the concept of the double-bounded hypothesis set.

Definition 11 (Double-bounded hypothesis set (HS(⊥e,B ,Me))). Let e
be an example, ⊥e,B be a bottom clause of relevant literals of e as defined in
Definition 6, Me be a meta theory as defined in Definition 8. Then

HS(⊥e,B ,Me) = {h| s.t: (1) h ∈ −→L⊥, and (2) h ∈ −−→LM}

From the Definition 11, it is clear that the double-bounded hypothesis set can be
considered as a combination of top-down and bottom-up approaches, and each
hypothesis will be generated as sequential subsumption of meta-theory relative
to bottom clause of relevant literals. Instead of starting from a seed example, we
generate the bottom clause of relevant literals of all the examples. This global-
theory generating mechanism is not new to the ILP community, as a similar
approach can be seen in the bottom clause propositionalisation [6].

Definition 12 (Abduction using MIE). Let B be the background knowl-
edge, HS(⊥e,B ,Me) be the double-bounded hypothesis set as defined in the Def-
inition 11, e be an example, A be the abducible predicate and R be the rule
to explain the observable predicates such that R = R

′
A. Let ⊥e,B the bottom

clause of relevant literals of e, and Ĥ be the set of inductive hypothesis; Ĥ =
HS(⊥e,B , R

′
). Then the MIE will generate a set of ground abductive hypotheses,

Λ={aθ: hθ |= ⊥e,B, h ∈ Ĥ and a ∈ A}; Ĥ = HS(⊥B,e, R
′
). Then the MIE

will generate a set of ground abductive hypotheses, Λ= {aθ: hθ |= ⊥B,e, h ∈ Ĥ
and a ∈ A};
– R ∧ Λ |= E
– Λ �|= B

Example 3. This example illustrates the steps through which we can perform
abduction using MIE [22] (please refer the Fig. 2). Let B, e, K, A as formulated
in Definition 12. Then the abductive procedure starts by generating the bottom
clause of relevant literals, ⊥B,e for the example e and later generates the double-
bounded hypothesis set Ĥ = HS(⊥B,e, R

′
). The abductive procedure will keep

track of θ for each h ∈ Ĥ and generate ground abducible facts.

4 Abduction of Microbial Interaction Using MIE

Microbial interactions refer to the various ways in which microbes interact with
each other and with other organisms. Microbial interactions include coopera-
tive and competitive interactions, such as symbiosis, commensalism, parasitism,
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Fig. 2. (Example 3) Learning abducible explanations using MIE

predation, and competition. Microbes can also interact indirectly by releasing
metabolites into their environment, which can affect the growth and develop-
ment of other microbes. Microbial interactions are essential for the functioning
of ecosystems since they contribute to the nutrient and energy cycles and can
influence the structure and composition of microbial communities. In a more
general way, A microbial interaction can be defined as a conserved effect on the
abundance of one microbial species caused by the presence of another. Thus,
the abductive procedure aims to infer interactions, following ecological theory to
explain the observed changes in the abundance of the species. Barroso-Bergada
et al. successfully encoded the microbial interactions into logical clauses and
applied A/ILP using Progol in [2].
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The abductive procedure aims to infer interactions following ecological theory
to explain the observed changes in the abundance of the species. The steps
involved in an abductive procedure are shown in Fig. 3.

Fig. 3. Abductive learning of microbial interaction

The first step for abducing the inference is to reflect the abundance changes
between communities of each species using logical statements. In [2], the ‘abun-
dance change’ and ‘presence’ logical statements are used as observations in an
abduction process. The observable predicate ‘abundance’ is defined as ‘abun-
dance (C1, C2, S1, Dir)’. Here, C1 and C2 symbolize two different community
samples where species S1 is present, and ‘Dir’ is the change in the direction of
abundance. The ‘presence’ of each species is also converted to a logical state-
ment with the structure: presence(C1, S2, yes/no) where C1 refers to a sample
community, S2 to a species and yes/no describes if S2 is present in C1 or not.
The second step is to encode the interaction hypothesis using logical statements.
The logical statements to define the observations are given in Eq. 2, in which
effect_up and effect_down are the abducible predicates. These abducibles are
used to learn whether two species interact positively (up) or negatively (down)
in a community.

abundance(C1, C2, S1, up) ← presence(C2, S2, yes),
presence(C1, S2, no),
effect_up(S2, S1)

abundance(C1, C2, S1, down) ← presence(C2, S2, yes),
presence(C1, S2, no),
effect_down(S2, S1)

(2)
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5 Empirical Evaluation

The performance of PyGol was evaluated using artificially generated datasets2
introduced in [2]. We have mainly considered two criteria for comparison with
two state-of-the-art systems, Aleph and Progol: accuracy and execution time.

5.1 Materials and Methods

For the experiment setup, we have chosen nine different datasets of 50 species
from 3 different strengths (2, 3 and 5). Table 1 will give you the statistical infor-
mation of the datasets we are considering. Since the interactions that drive the
abundance of the computer-generated tables are known, it is possible to treat
interaction inference as a classification problem. Interactions can be classified
between existing and non-existing, and the estimator values obtained using the
different functions are the classification accuracy. Thus, the area under the curve
(AUC) of the true positive rate against the false positive rate (ROC curve) can
be used to measure performance.

In all the three systems, we have used the same experimental setup. The
search for the best hypotheses is guided by an evaluation function called ‘com-
pression’, which is defined as f = p−(c+n), where p is the number of observations
(training examples) correctly explained by the hypothesis (positive examples),
n is the number incorrectly explained (negative examples) and c is the length of
the hypothesis (in this study, it always One because the hypothesis is a single
fact). The rules to define the observations are shown in the Eq. 2, and atoms
effect_up and effect_down are the abducible.

Other than Progol, we have also considered Aleph [20], a state-of-the-art
ILP algorithm, for the empirical evaluation. Like PyGol, Aleph also uses the
advantage of inverse entailment but mode-directed inverse entailment. A novel
user-friendly Python/Jupyter interface for Inductive Logic programming, PyILP
[25], was used to run the experiments for Aleph and Progol 5.0 was used for
progol-related experiments.

6 Results and Discussions

Figure 4, records the area under ROC curves, and Fig. 5 displays the total exe-
cution time from different experiments. In Fig. 4, each row represents datasets
of different strengths, such as 2, 3 and 5, as in Table 1. PyGol outperforms all
other approaches in most of the experiments. The average difference between
PyGol and Aleph is 4.3% and 1.7% with Progol. Regarding the execution time,
it is evident that PyGol is very fast compared to Progol and Aleph. While con-
sidering all the execution time, it is clear that PyGol is 45 to 65 times faster
than Aleph and 40 to 60 times faster than Progol.

The primary reason for the speedy execution time for PyGol is its new effi-
cient way of generating the hypothesis space using meta inverse entailment.
2 Available from https://github.com/danyvarghese/IJCLR22-Abduction.

https://github.com/danyvarghese/IJCLR22-Abduction
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Table 1. Dataset statistics

Dataset Strength No. of observations
Species abundance presence presence1 Total

S_1 2 40 17690 2000 2000 21690
S_2 25252 29252
S_3 23680 27680
S_4 3 20732 24732
S_5 21774 25774
S_6 28190 32190
S_7 5 20742 24742
S_8 25072 29072
S_9 24708 28708

Fig. 4. Comparison of the area under the ROC curve
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Fig. 5. Comparison on execution time

The theoretical framework for converting the general subsumption to atomic
subsumption makes MIE more efficient. While considering the results, the new
abductive learning approach using meta inverse entailment is more efficient than
Progol and Aleph. MIE could learn all the abducted facts generated by both
approaches quickly, showing the system’s impact on hypothesis space genera-
tion. The abductive framework using MIE will not affect the order of examples
as it follows a global-theory-making mechanism, but Progol and Aleph follow
the greedy approach.

7 Conclusion

This paper presents an application that uses abductive learning to infer microbial
interaction. We presented abduction as a variant of inductive learning in the first
part of the paper, using a novel ILP approach called meta inverse entailment.
The bottom clause of relevant literals and meta theory is used in meta inverse
entailment, generated automatically from background knowledge without any
declarative bias of user interaction. In the second part, we presented a novel
abductive framework for learning microbial interaction, which we implemented
as a Python package in PyGol.

According to empirical evaluations, the MIE is efficient enough for abductive
learning regarding execution time and accuracy. The results show that PyGol
outperforms other systems by 40 to 60 times. The new learning approach demon-
strates the theoretical strength of the system introduced using sequential sub-
sumption of meta-theory relative to the bottom clause of relevant literals, which
can be reduced to atomic subsumption and performed without much complexity.
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